
 

International Journal of Applied Technology in Medical Sciences 

Vol 4 Issue 2 (2025) 

Pages (110 - 144) 

Available at 

www.emiratesscholar.com 

 

 

 

  
   
 
 
 
 

_______________________________________________________________________________________________________________________________________________ 

International Journal of Applied Technology in Medical Sciences (eISSN:3104-5197)  https://www.emiratesscholar.com/publications 

https://doi.org/10.54878/68qsmb79 

 

 

Translational applications of exosomal proteomics in 

personalised medicine: using detailed proteomic analysis of 

exosomes to develop individualised therapeutic strategies. 
Saima Zaheer1, Muhammad Ilyas2 

Student, London Metropolitan University1, Child Specialist2 

saz0167@my.londonmet.ac.uk  

 

ARTICLE HISTORY 

 

Received: 01 July 2025.  

Accepted: 26 November 2025.  

Published: 29 December 2025. 

 

PEER – REVIEW STATEMENT: 

 

This article was reviewed under a double-

blind process by three independent 

reviewers. 

 

 

HOW TO CITE 

 

Zaheer, S. ., & Ilyas, M. (2025). Translational 

applications of exosomal proteomics in 

personalised medicine: using detailed 

proteomic analysis of exosomes to develop 

individualised therapeutic strategies. 

International Journal of Applied Technology 

in Medical Sciences, 4(2), 110-144. 

https://doi.org/10.54878/68qsmb79 

 
 
 

 

 

 
Copyright: © 2025 by the author. 

Licensee Emirates Scholar Center for 

Research & Studies, United Arab Emirates. 

This article is an open access article 

distributed under the terms and conditions 

of the Creative Commons Attribution 

(CC BY) license 

(https://creativecommons.org/licenses/by/4.0/). 

 ABSTRACT 

 
Exosomal proteomics is becoming an indispensable asset in the advancement of 

personalised medicine, offering a non-invasive means of disease characterisation, 

biomarker identification, and therapy customisation. Exosomes - nanoscale extracellular 

vesicles secreted by nearly all cell types, encapsulate a complex cargo of proteins, lipids, 

metabolites, and nucleic acids that mirror the physiological or pathological condition of 

their cellular origin. Among these, the proteomic constituents offer critical insight into 

intracellular pathways, rendering them highly valuable for elucidating disease 

mechanisms and tailoring molecularly informed treatments. Recent innovations in mass 

spectrometry-based proteomic technologies have refined the ability to decode disease-

specific exosomal protein signatures, enabling early-stage diagnosis and real-time 

monitoring via liquid biopsies, especially in oncology. Additionally, exosomes are being 

investigated as next-generation therapeutic vehicles, engineered to deliver targeted 

biomolecules with high biocompatibility and minimal immunogenicity. Despite ongoing 

challenges in isolation standardisation, cargo heterogeneity, and clinical scalability, 

progress in exosome engineering and proteomic analytics continues to unlock new 

possibilities. The integration of exosomal proteomics into clinical practice marks a 

transformative shift towards precision medicine, where treatment strategies are 

increasingly aligned with individual molecular profiles. Exosomal proteomics is becoming 

an indispensable asset in the advancement of personalised medicine, offering a non-

invasive means of disease characterisation, biomarker identification, and therapy 

customisation. Exosomes - nanoscale extracellular vesicles secreted by nearly all cell 

types, encapsulate a complex cargo of proteins, lipids, metabolites, and nucleic acids that 

mirror the physiological or pathological condition of their cellular origin. Among these, 

the proteomic constituents offer critical insight into intracellular pathways, rendering 

them highly valuable for elucidating disease mechanisms and tailoring molecularly 

informed treatments. Recent innovations in mass spectrometry-based proteomic 

technologies have refined the ability to decode disease-specific exosomal protein 

signatures, enabling early-stage diagnosis and real-time monitoring via liquid biopsies, 

especially in oncology. Additionally, exosomes are being investigated as next-generation 

therapeutic vehicles, engineered to deliver targeted biomolecules with high 

biocompatibility and minimal immunogenicity. Despite ongoing challenges in isolation 

standardisation, cargo heterogeneity, and clinical scalability, progress in exosome 

engineering and proteomic analytics continues to unlock new possibilities. The 

integration of exosomal proteomics into clinical practice marks a transformative shift 

towards precision medicine, where treatment strategies are increasingly aligned with 

individual molecular profiles. 

Keywords: Exosomal Proteomics, Personalised Medicine Strategies, 

Exosome-Based Therapeutics, Proteomic Biomarkers in Precision 

Medicine, Translational Exosome Research. 
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1. An Introduction to Exosomal Proteomics within 

the Framework of Personalised Medicine 

Personalised medicine marks a paradigm shift in 

healthcare by moving beyond the traditional "one-

size-fits-all" model to a more precise, individualised 

approach that incorporates a patient’s genetic 

profile, environmental exposure, and lifestyle 

factors. This shift aims to enhance therapeutic 

efficacy, reduce adverse drug reactions, and 

improve overall patient outcomes (Pandey & 

Gupta, 2024; Parmar et al., 2021). At the heart of 

this transformation lie integrative technologies 

such as high-throughput sequencing, 

bioinformatics, and systems biology, which enable 

the identification of disease-specific molecular 

signatures and actionable targets (Qian et al., 

2024; Knowledge, Attitude and Ethical Perception 

towards precision Medicine Among Healthcare 

Professionals, 2024). 

Despite its transformative potential, personalised 

medicine still grapples with substantial 

challenges. The discovery and clinical validation of 

composite biomarkers that reliably predict 

treatment responses remain limited by tumour 

heterogeneity, genetic complexity, and resistance 

mechanisms (Ahmed, 2024; Foroutan, 2015). 

Additionally, ethical, regulatory, and economic 

considerations, such as data privacy, accessibility 

of advanced diagnostics, and health equity, 

continue to hinder its widespread adoption 

(Dharani & Kamaraj, 2024; Siddique, 2024). 

Whereas conventional therapeutic strategies 

derive efficacy from standardised clinical trial 

models, personalised medicine emphasises the 

development of predictive, preventive, and 

participatory care, particularly by leveraging 

advancements in omics technologies. In this 

context, proteomics has emerged as a particularly 

powerful tool. As proteins serve as both functional 

effectors and disease biomarkers, proteomic 

profiling provides a dynamic reflection of the 

physiological state and molecular pathology of 

individual patients (Simonian, 2016; Vasdev, 2020). 

Unlike genomics, which identifies potential 

predispositions, proteomics captures real-time 

cellular processes, protein-protein interactions, 

and post-translational modifications that are 

often central to disease progression and 

therapeutic resistance (Guest et al., 2013; 

Proteomics in Human Healthcare, 2022). 

When integrated with genomics and 

metabolomics, proteomics enhances the 

resolution of disease phenotyping and enables the 

stratification of patients into more refined 

therapeutic categories. Recent applications 

include the identification of diagnostic and 

prognostic biomarkers in neurodegenerative 

diseases, such as Alzheimer's disease, and in 

malignancies where dysregulated protein 

networks are mapped to tailor treatment 

protocols (Ryu et al., 2025; Hegde et al., 2024). 

Moreover, proteomic technologies such as liquid 

chromatography-tandem mass spectrometry (LC-

MS/MS) and multiplexed assays have facilitated 

the translation of biomarker discovery into clinical 

practice (Wilson, 2004; Steinmetz, 2022). 

Within this proteomic landscape, exosomal 

proteomics has garnered growing interest due to 

the unique characteristics of exosomes - 

nanoscale extracellular vesicles actively secreted 

into biofluids, including blood, urine, and 

cerebrospinal fluid. These vesicles encapsulate 

proteins, lipids, and nucleic acids reflective of their 

parent cells, making them ideal candidates for 

non-invasive liquid biopsies in cancer and other 

systemic diseases (Yu et al., 2022; Panfoli et al., 

2022). Exosomes are inherently stable, 

biocompatible, and capable of traversing 

biological barriers, thus offering a multifaceted 

platform for diagnostics, monitoring, and 

targeted therapy (Silva, 2022; Sharrer, 2023). 

The therapeutic potential of exosomes extends 

beyond their diagnostic capacity. Engineered 

exosomes have been explored as delivery vehicles 

for siRNAs, CRISPR-Cas9 components, and 

chemotherapeutic agents, thereby addressing 

drug solubility, targeting specificity, and systemic 

toxicity. Furthermore, their endogenous 

immunomodulatory and regenerative functions 

position them as candidates for applications in 

inflammatory, neurodegenerative, and 

autoimmune disorders (Mori et al., 2023; Kalluri et 

al., 2020). However, technical challenges remain. 

The lack of standardised protocols for exosome 
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isolation, characterisation, and quantification 

poses significant barriers to clinical translation 

(Wang et al., 2024; Urbanelli et al., 2015). 

Nevertheless, ongoing advances in microfluidics, 

nanotechnology, and bioinformatics continue to 

refine the field of exosomal proteomics. These 

innovations promise to enhance analytical 

sensitivity, improve scalability, and standardise 

downstream applications, thereby facilitating the 

incorporation of exosome-based strategies into 

the clinical arsenal of personalised medicine 

(Debbarma et al., 2024). As research progresses, 

exosomal proteomics holds the potential to 

revolutionise precision healthcare by enabling 

real-time, minimally invasive insights into patient-

specific disease biology and response to 

treatment. 

1.1 Exosomes as Highly Specific Biomarkers 

Exosomes are nanoscale extracellular vesicles, 

typically 30–150 nm in diameter, that are secreted 

by nearly all cell types and found in a variety of 

biofluids. Their widespread presence in fluids such 

as blood, saliva, and urine, combined with a 

protective lipid bilayer, makes them exceptionally 

stable and ideal candidates for non-invasive 

diagnostics (Zhou, 2024; Kim et al., 2018; Boriachek 

et al., 2018). This bilayer encloses a diverse array 

of bioactive molecules, including proteins, lipids, 

RNA, and DNA, which reflect the physiological or 

pathological status of their originating cells. 

These vesicles mediate intercellular 

communication by transferring functional 

biomolecules that influence critical processes 

such as tumour proliferation, immune modulation, 

and tissue homeostasis (Zhou, 2024; Boriachek et 

al., 2018). Their content mirrors the molecular 

state of the parent cell, allowing them to function 

as liquid biopsies, particularly in oncology and 

cardiovascular diagnostics, where they provide 

insight into disease onset, progression, and 

therapeutic response (Lin et al., 2020; Kalluri, 

2016). 

Advanced analytical tools, including 

ultracentrifugation and microfluidics, have 

enhanced the ability to isolate and characterise 

exosomes with high specificity. Despite this, 

challenges remain in the standardisation of 

isolation protocols, limiting reproducibility across 

studies (Hochendoner et al., 2018; Boriachek et al., 

2018). In neurological applications, exosomes are 

increasingly employed due to their capacity to 

traverse the blood-brain barrier, enabling precise 

delivery of therapeutic payloads (Kudpage et al., 

2024). Importantly, exosomes demonstrate 

remarkable potential in cancer diagnostics due to 

their enrichment in tumour-specific proteins, 

RNAs, and DNAs. This molecular cargo enables 

early detection, real-time monitoring of disease 

progression, and response to therapy (Gao et al., 

2018; Yu et al., 2023). Their stability and resistance 

to enzymatic degradation provide a distinct 

advantage over other biomarkers found in plasma 

or serum (Jin et al., 2024; Jiang et al., 2019; 

Roychowdhury, 2024). 

In cancer biology, exosomes are implicated in 

processes such as tumour growth, survival, and 

metastatic spread. Their inhibition is being 

explored as a therapeutic strategy, and their 

biocompatibility makes them suitable as drug 

delivery vehicles (Nafar et al., 2022; Ebrahimi et al., 

2024; Rani et al., 2020). Cardiovascular studies 

have also identified exosomal miRNAs as 

indicators of myocardial infarction and 

atherosclerosis (Li et al., 2018; Ndoni et al., 2022), 

further affirming their utility in non-invasive 

diagnostics. The engineered use of exosomes to 

transport chemotherapeutic agents directly to 

tumour sites has shown potential to minimise 

systemic toxicity and improve treatment efficacy 

(Jiang et al., 2019; Mohseni et al., 2025). Their 

immunomodulatory functions and ability to 

condition pre-metastatic niches emphasise their 

dual role in diagnostics and therapeutics 

(Aghebati-Maleki et al., 2019; Munson & Shukla, 

2015). 

Despite these advancements, issues such as large-

scale production, cargo heterogeneity, and 

regulatory limitations remain barriers to their 

clinical translation (Mosquera-Heredia et al., 2021; 

Dwivedi et al., 2023). Nevertheless, exosomes 

represent a transformative platform for precision 

medicine by offering patient-specific diagnostic 

and therapeutic options that are minimally 

invasive and biologically compatible (Alshubaily & 
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Al-Zahrani, 2021). In diseases such as non-small cell 

lung carcinoma, exosomes facilitate early-stage 

detection via stable tumour-derived antigens 

(Yang et al., 2023). Their encapsulated microRNAs 

(miRNAs) have emerged as robust diagnostic and 

prognostic biomarkers, and their stability within 

exosomes enhances their diagnostic longevity 

(Preethi et al., 2022). 

Exosome-based proteomic profiling holds 

significant promise for enhancing personalised 

medicine, particularly in the context of chronic 

diseases including diabetes, neurodegenerative 

disorders, and cardiovascular disease (Debbarma 

et al., 2024; Al-Madhagi, 2024; Kang, 2019). Their 

capacity to cross biological barriers such as the 

blood-brain barrier and carry CRISPR/Cas systems 

or RNA therapeutics adds to their therapeutic 

utility (Simpson et al., 2009; Ebrahimi et al., 2024; 

Urbanelli et al., 2015).Although standardisation 

and quality control remain ongoing challenges, 

continuous innovations in exosome proteomics 

are enabling deeper insights into disease 

mechanisms and supporting the development of 

individualised therapeutic strategies (Dwivedi et 

al., 2023). 

2. The Exosome "Omics" Probing and Profiling: 

Exosomal Proteomics 

2.1 Advanced Isolation Techniques Supporting 

Clinical Applications 

The clinical integration of exosome profiling in 

personalised medicine necessitates the utilisation 

of robust isolation and characterisation 

methodologies, given the significance of 

exosomes as diagnostic and therapeutic agents. 

These extracellular vesicles (EVs) are found in a 

wide range of biological fluids, including blood, 

urine, and cerebrospinal fluid, making their 

precise isolation fundamental to any downstream 

clinical application. Conventional techniques such 

as ultracentrifugation, ultrafiltration, and 

polymer-based precipitation remain widely 

employed. Ultracentrifugation enables the 

isolation of exosomes of smaller diameters with 

reduced protein contamination, though it is labor-

intensive, time-consuming, and requires 

specialised equipment (Ansari et al., 2023). In 

contrast, precipitation methods offer simplicity 

and affordability, albeit often at the expense of 

purity and reproducibility (Ansari et al., 2023). 

Emergent microfluidic technologies present an 

attractive alternative, delivering high-purity 

isolations with significantly reduced processing 

time, thereby aligning with the practical needs of 

point-of-care diagnostics (Contreras-Naranjo et 

al., 2017). Likewise, magnetic bead-based 

protocols allow for the high-specificity retrieval of 

exosomes, though they suffer from challenges 

concerning scalability and standardisation (Jiawei 

et al., 2022). The decision to employ a specific 

isolation method hinge on clinical priorities, 

including yield, purity, cost, reproducibility, and 

processing time (Yakubovich, 2022; Kurian et al., 

2021). The pivotal role of exosomes in cell–cell 

communication, as well as their utility as 

biomarkers in non-invasive diagnostics such as 

liquid biopsies, particularly in oncology, reinforces 

the demand for refined isolation technologies (Yu 

et al., 2022). Future advancements should 

priorities the standardisation and cost-

effectiveness of these techniques to facilitate the 

seamless adoption of exosomal proteomics into 

personalised clinical workflows (Gurunathan et al., 

2019; Sharma, 2017). 

Among these methodologies, size exclusion 

chromatography (SEC) has emerged as a 

prominent and reproducible approach due to its 

capacity to isolate vesicles based on molecular 

size without the use of binding ligands. This 

preserves the structural and functional integrity 

of exosomes (Hall, 2018; Size Exclusion 

Chromatography (SEC), 2022). SEC demonstrates 

high purity in isolating key exosomal markers such 

as CD9, CD63, and CD81, and is both scalable and 

cost-efficient, making it an accessible method for 

laboratories with limited resources (Sidhom et al., 

2020; Different Isolation Techniques, 

2022).Nevertheless, SEC is constrained by 

limitations such as low throughput owing to 

restricted sample load volumes and flow rates, 

making it less suitable for large-scale applications 

(Hall, 2018). It remains well-suited for exploratory 

research, including proteomic analyses from 

Drosophila cell lines (Pandey & Chawla, 2022). Its 

gentle size-dependent exclusion mechanism 
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permits efficient separation of proteins and 

nanoparticles, thereby maintaining vesicle 

viability for downstream analyses (Size Exclusion 

Chromatography (SEC), 2022). While other 

methods, such as immunoaffinity capture and 

ultracentrifugation, remain relevant, SEC’s 

balance of efficiency and functional preservation 

underpins its expanding application in diagnostic 

and therapeutic exosome research (Sidhom et al., 

2020; Dissanayake et al., 2021). 

Immunoaffinity-based isolation leverages 

antibody binding to surface antigens most 

commonly CD63, CD9, and CD81 to selectively 

enrich exosome subtypes from complex biofluids. 

This approach often employs magnetic bead 

conjugates to improve yield and specificity. 

Oksvold et al. (2015) demonstrated the efficacy of 

this workflow using flow cytometry and electron 

microscopy. Further, Jiawei et al. (2022) confirmed 

the high purity achieved via magnetic bead-based 

protocols, although they highlighted high 

operational costs and challenges in 

methodological standardisation. The specificity of 

immunoaffinity isolation is further exemplified by 

Shrivastava et al., who utilised cost-effective 

chicken-derived antibodies to capture targeted 

exosome populations (Shrivastava et al., 2023). 

Nonetheless, this method faces limitations when 

isolating rare or tissue-specific exosomes, such as 

neuronal subtypes, which require alternative 

markers like L1CAM or GluR2/3 for optimal capture 

(Yousif et al., 2021). Novel approaches using gold 

nanoparticles conjugated to anti-CD63 antibodies 

have also been explored to improve efficiency and 

cost-effectiveness in exosome separation from 

complex fluids (Efficient Strategy, 2023; Panwar et 

al., 2023). Despite its strengths in specificity and 

selectivity, immunoaffinity capture remains 

limited by high costs and the need for refinement 

in targeting less abundant exosome populations. 

Microfluidic-based isolation platforms have 

recently revolutionised the field by enabling rapid, 

sensitive, and highly specific separation of 

exosomes based on physical and biochemical 

attributes. These miniaturised systems offer 

enhanced recovery rates, reduced sample 

volumes, and integrated analytical capabilities 

(Kumar et al., 2023). Gao et al. (2023) and Ding et 

al. (2021) noted that such lab-on-a-chip devices 

improve yield and purity while shortening isolation 

times, making them particularly suited for real-

time diagnostic applications. Integration of 

microfluidic technology with traditional 

approaches, such as immunomagnetic bead 

capture, has led to hybrid systems capable of 

continuous and automated workflows (Niu et al., 

2020). These advances are crucial for clinical 

settings, enabling in situ exosome 

characterisation for early cancer detection, 

prognosis, and personalised treatment (Xu & Ye, 

2023). 

However, translational barriers persist, including 

the high cost of chip fabrication and the need for 

enhanced reproducibility across diverse biological 

matrices (Kumar et al., 2023; Chen et al., 2022). 

Nonetheless, the potential of microfluidic 

platforms to reshape exosome analysis remains 

considerable, with research focusing on their 

further miniaturisation, multiplexing capabilities, 

and integration into point-of-care diagnostic 

platforms (Raju et al., 2022; Wang et al., 2023). In 

summary, each sophisticated isolation strategy 

contributes uniquely to the yield, specificity, and 

integrity of exosomes derived from various 

biological matrices. Optimal method selection 

must be dictated by clinical and analytical 

demands, factoring in efficiency, scalability, 

reproducibility, and cost. The evolution of these 

technologies will underpin the successful 

deployment of exosomal proteomics in precision 

diagnostics and therapeutics. 

2.2 Scale of Proteins through Mass Spectrometry 

and Quantitative Analysis 

Mass spectrometry (MS) based proteomic analysis 

of exosomes has become a cornerstone in 

elucidating the molecular underpinnings of 

diverse pathological conditions and in identifying 

viable therapeutic targets. Exosomes, a subset of 

small EVs, are instrumental in mediating 

intercellular communication by transporting 

proteins, lipids, and nucleic acids. Proteomic 

interrogation of these vesicles is especially critical 

in oncology, where exosomes mirror the altered 

proteomic landscape of their parental tumour 

cells, thereby contributing to key processes such 

https://www.emiratesscholar.com/publications
https://doi.org/10.54878/68qsmb79


115 of 144 

 

________________________________________________________________________________________________________ 
International Journal of Applied Technology in Medical Sciences (eISSN:3104-5197)   https://www.emiratesscholar.com/publications 

 https://doi.org/10.54878/68qsmb79 

as tumour invasion and metastasis (Wang et al., 

2020; Simona et al., 2013). 

Recent technological advancements in MS have 

markedly increased the sensitivity, dynamic range, 

and resolution of proteomic workflows, enabling 

the detection of low-abundance proteins within 

exosomes (Xu et al., 2020; Angel et al., 2012). 

When integrated with refined bioinformatics tools 

and expansive proteome databases, these 

enhancements have allowed for comprehensive 

profiling of exosomal proteomes, thereby 

uncovering insights into their biological roles and 

clinical potential as biomarkers (Jin et al., n.d.). For 

instance, MS-based analyses have catalogued 

protein compositions of tumour-derived 

exosomes in prostate and bladder cancers, 

highlighting their biomarker utility (Wang et al., 

2020). Furthermore, the fusion of MS with 

advanced separation technologies such as ion 

mobility spectrometry and lab-on-a-chip 

microfluidic systems has refined proteome 

resolution and deepened the biological 

interpretability of exosomal content (Angel et al., 

2012). These methodological innovations 

underpin the application of exosomal proteomics 

in precision medicine, supporting both diagnostic 

monitoring and the stratification of personalised 

therapeutic interventions (Olver and Vidal, 2007; 

Simpson et al., 2009). 

In terms of quantification strategies, label-free 

quantification (LFQ) and isotopic labelling 

represent two dominant approaches, each with 

specific methodological benefits and constraints. 

LFQ estimates protein abundance by comparing 

peptide ion intensities, providing broad proteome 

coverage and high throughput, albeit with 

sensitivity to ionisation efficiency variability and 

necessitating rigorous data normalisation (Wang 

et al., 2006; Ankney et al., 2018). Conversely, stable 

isotope labelling methods including metabolic 

labelling and ^18O-labelling introduce known mass 

differentials to accurately compare experimental 

conditions and are particularly suited for 

quantifying post-translational modifications 

(PTMs) such as phosphorylation and glycosylation, 

which are vital for deciphering disease 

pathophysiology (Yuan et al., 2009; Anand et al., 

2017; Liu et al., 2020). 

Despite their strengths, isotope labelling 

techniques can be cost-prohibitive and 

operationally demanding, requiring sophisticated 

instrumentation and expert handling (Virág et al., 

2024). Nonetheless, the combined use of LFQ and 

isotope-based methodologies significantly 

advances exosomal proteomic studies, 

contributing to the identification of disease-

associated signatures and the development of 

personalised diagnostic tools (Chia et al., 2017; Yao 

et al., 2013).MS remains a pivotal analytical 

modality in capturing protein dynamics and PTMs 

essential for understanding molecular disease 

mechanisms (Hoshino, 2015; Pan et al., 2009). 

However, the complexity and multi-step nature of 

MS workflows, alongside the lack of universally 

adopted standards, continue to impede cross-

study reproducibility (Yao et al., 2013). Addressing 

these methodological variabilities will be vital for 

integrating exosomal proteomics into clinical 

diagnostics and personalised therapeutics (Chia et 

al., 2017; Liu et al., 2020). 

2.3 Reproducibility and Standardisation 

Challenges 

Achieving reproducibility and standardisation in 

exosomal proteomics remains a persistent 

obstacle due to the variability in exosome isolation 

techniques, sample handling protocols, and lab-

specific analytical procedures. The International 

Society for Extracellular Vesicles (ISEV) has taken 

a proactive stance in remedying this through the 

MISEV2018 guidelines, which promote inter-

laboratory consistency and methodological 

transparency (Nieuwland et al., 2020; Yadav et al., 

2024). These guidelines underscore the 

importance of harmonised protocols for sample 

acquisition, processing, and data analysis as 

foundational requirements for reproducible 

outcomes in both research and clinical 

applications (Nieuwland et al., 2020). 

Nevertheless, challenges persist, notably the 

heterogeneity of vesicle populations and the 

multifaceted nature of EV isolation, which 

together compromise reproducibility and 

translational feasibility (Yadav et al., 2024; 

Jablonska et al., 2019). Common isolation methods 

such as ultracentrifugation, polymer-based 
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precipitation, and immunoaffinity capture each 

present trade-offs in terms of yield, purity, and 

operational complexity (Zhou et al., 2020; 

Abramowicz et al., 2016). The absence of 

universally recognised Good Manufacturing 

Practices (GMP) and standard reference materials 

further exacerbates inconsistencies across 

studies (Lai et al., 2022). Platforms such as EV-

TRACK and repositories like EVpedia and ExoCarta, 

have been instrumental in fostering open data 

practices and promoting standardisation efforts 

within the extracellular vesicle research 

community (Yadav et al., 2024). Additionally, 

innovations in isolation technologies, including 

size-exclusion chromatography (SEC) and MS-

compatible purification workflows, are 

contributing to higher fidelity in exosome 

preparations for downstream proteomic analyses 

(Abramowicz et al., 2016; Abramowicz et al., 2018). 

Parallel to methodological advances, efforts are 

ongoing to establish globally accepted reference 

materials and internal controls that could serve as 

benchmarking tools across laboratories. These 

materials are indispensable for reducing inter-

laboratory variability and for ensuring robust, 

quantifiable outputs in exosome-based 

proteomics. Adoption of universally accepted 

reproducibility metrics and workflow validation 

protocols will be pivotal in overcoming current 

translational barriers and facilitating the clinical 

implementation of personalised exosome-based 

diagnostics. Optimising personalised medicine 

through exosomal proteomics necessitates 

rigorous approaches to exosome isolation, 

characterisation, and quantitative protein 

profiling. Techniques such as SEC, immunoaffinity 

capture, and microfluidic enrichment facilitate 

the acquisition of high-purity vesicle populations, 

which is critical for accurate biomarker detection. 

Advanced proteomic workflows, leveraging MS 

technologies, enable comprehensive profiling of 

exosomal proteins, including rare and modified 

species. To fully realise the diagnostic and 

therapeutic promise of exosomes, reproducibility 

standards must be stringently enforced across the 

proteomic pipeline. Addressing these challenges 

will empower the deployment of exosome-based 

solutions in precision medicine, enabling patient 

stratification, targeted therapy, and real-time 

disease monitoring with enhanced clinical utility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Integrated Workflow for Exosomal Proteomics Using Mass Spectrometry (Adapted from Li, M-Y., 

Zhao, C., Chen, L., Yao, F-Y., Zhong, F., Chen, Y., Xu, S., Jiang, J-Y., Yang, Y-L., Min, Q-H., Lin, J., Zhang, H-B., Liu, J., 

Wang, X-Z. & Huang, B. (2021) . 
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This schematic workflow shows the LC-MS/MS-

based quantitative proteomic analysis of 

exosomes isolated from plasma samples of IM-R 

and IM-S CML patients. CML, chronic myeloid 

leukemia; CP, chronic phase; BP, blastic phase; AP, 

acceleration phase; TEM, transmission electron 

microscope; NTA, nanoparticle tracking analysis; 

WB, western blot; LC-MS/MS, liquid 

chromatography-tandem mass spectrometry. 

3. Disease-Specific Exosomal Proteomic 

Signatures for Personalised Treatments 

3.1 Exosomal Proteomes Unique in Cancer 

Exosomal proteomes offer a non-invasive window 

into tumour biology, conveying biomarkers that 

inform tumour complexity, treatment response, 

and prognosis. Tumour cells shed exosomes into 

the bloodstream and other bodily fluids, with their 

proteomic cargo reflecting the cellular and 

microenvironmental alterations associated with 

malignancy. Analysing these protein signatures 

can reveal mechanisms of tumour progression, 

treatment resistance, and heterogeneity, 

facilitating tailored therapeutic interventions. 

Tumour heterogeneity, characterised by the 

coexistence of diverse sub clonal populations, 

poses significant clinical challenges. Traditional 

imaging modalities such as ultrasound and MRI 

provide structural data but lack molecular 

specificity. By contrast, exosomal content offers a 

dynamic readout of tumour heterogeneity,  for 

example, elevated exosomal human epidermal 

growth factor receptor 2 (HER2) has shown 

promise as a real-time biomarker to guide therapy 

in HER2-positive breast cancer. Exosomal HER2 

correlates with disease aggressiveness and may 

indicate emerging resistance to therapies such as 

trastuzumab (Moon et al., 2024; Jiang et al., 2024). 

Research reveals that circulating exosomal 

miRNAs, including miR-1246 and miR-155, are 

predictive of trastuzumab resistance, highlighting 

the diagnostic value of exosome-derived nucleic 

acids (Zhang et al., 2020; Zuo et al., 2021). 

In colorectal cancer (CRC), carcinoembryonic 

antigen (CEA) is an established biomarker used in 

clinical practice. Recent evidence indicates that 

exosomal CEA surpasses serum markers in 

sensitivity and may provide more reliable 

monitoring of therapeutic efficacy. Exosomal CEA 

levels dynamically reflect treatment responses to 

chemotherapy and immunotherapy in CRC, 

demonstrating stronger prognostic utility when 

combined with markers such as CD147 

(Campo-da-Paz et al., 2018; Gu et al., 2023). 

Exosomal profiling, when integrated with 

conventional biomarkers, offers a robust tool for 

monitoring disease progression and 

management. Overall, tumour-derived exosomal 

proteomes provide real-time insights into tumour 

status, heterogeneity, and therapy response. 

Characterising these proteins enables clinicians to 

devise targeted treatment regimens that are both 

effective and minimally toxic, aligning with the 

principles of precision oncology. 

3.2 Neurological Diseases and Exosomal Markers 

Exosomal proteomics has gained significant 

traction as a minimally invasive diagnostic and 

mechanistic tool in neurodegenerative diseases, 

notably Alzheimer’s disease (AD) and Parkinson’s 

disease (PD), due in part to the capacity of 

exosomes to bypass the blood-brain barrier (BBB). 

These nanoscale vesicles can transport molecular 

cargo proteins, lipids, and nucleic acids from the 

central nervous system (CNS) into peripheral 

fluids such as blood and saliva, providing a 

"window" into brain pathology (Rani et al., 2020; 

Younas et al., 2022). In AD, exosomes carry 

pathological hallmarks, including amyloid-β and 

hyperphosphorylated tau (pTau, notably at Thr181 

and Ser396), which are implicated in 

neurofibrillary tangle formation. Numerous 

studies have demonstrated that levels of pTau and 

amyloid-β in exosomes are significantly elevated in 

patients compared to controls, underscoring their 

potential as early diagnostic biomarkers (Saman 

et al., 2012; Sun et al., 2020; Cai et al., 2022). Meta-

analyses confirm that brain-derived exosomal 

amyloid-β42 (SMD 1.53, p < 0.05) and p-Tau-181 

(SMD 4.04, p < 0.001) reliably discriminate AD 

from healthy individuals. 

Similarly, in PD, exosomal α-synuclein levels 

derived from neuronal sources are markedly 

elevated. Early reports found plasma exosomal α-
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synuclein to be higher in PD than in controls, with 

moderate diagnostic accuracy (AUC≈0.65). 

Further validation across multiple cohorts, 

including prodromal PD, identified a ~2-fold 

increase in neuronal exosomal α-synuclein, 

independent of disease severity, suggesting its use 

as a pharmacodynamic biomarker (turn0search1). 

Meta-analytic assessments corroborate its 

significant elevation (SMD ~1.37, p < 0.001) in both 

total and neuron-derived exosomes. Advanced 

detection techniques, including immunocapture 

using L1CAM and protein misfolding cyclic 

amplification, have further improved the 

specificity and sensitivity of α-synuclein detection. 

Beyond diagnostic utility, exosomal cargoes are 

increasingly recognised as mediators of disease 

pathophysiology and potential therapeutic 

targets. For instance, exosome-mediated 

propagation of amyloid-β, tau, and misfolded α-

synuclein may contribute to the progressive 

spread of neurodegenerative pathology in AD and 

PD (Alzahrani et al., 2024; Rastogi et al., 2021; Shi 

et al., 2023). Moreover, exosomes themselves are 

being investigated as drug-delivery vehicles to the 

CNS, offering novel therapeutic modalities 

(Kudpage et al., 2024). However, technical 

challenges persist, particularly regarding the 

standardisation of exosome isolation and the 

heterogeneity inherent to CNS-derived vesicles 

(Younas et al., 2022; Kudpage et al., 2024). 

Developing robust, validated protocols remains 

critical for translating exosomal biomarkers into 

clinical practice.In summary, exosomal 

proteomics has emerged as a transformative 

approach in neurology, facilitating early diagnosis, 

tracking disease progression, and elucidating 

mechanisms for targeted intervention. Continued 

refinement of vesicle isolation techniques and 

quantitative methodologies will be essential to 

unlock their full translational potential (Osaid et 

al., 2023; Fan et al., 2022). 

3.3 Infectious Disease and Autoimmune Profiles 

Exosomes, nanoscale lipid bilayer-bound 

extracellular vesicles, serve as pivotal agents in 

modulating immune responses and inflammation, 

thereby influencing the pathophysiology of 

infectious and autoimmune diseases. These 

vesicles convey a multitude of bioactive cargos 

including proteins, microRNAs (miRNAs), DNA 

fragments, lipids, and immune modulators 

thereby facilitating intercellular communication 

between immune cells and peripheral tissues 

(Hussain, Zhao and Rahman, 2022; Umeche and 

Olaniyan, 2023). The immunomodulatory 

potential of exosomes stems from their ability to 

influence both innate and adaptive immunity, 

particularly under pathophysiological conditions. 

3.3.1 Autoimmune Pathogenesis and Exosomal 

miRNAs 

In autoimmune diseases, exosomes derived from 

immune and non-immune cells contain distinct 

miRNA signatures that actively participate in the 

dysregulation of immune tolerance. For example, 

in type 1 diabetes mellitus (T1DM), miR-142-3p, 

miR-142-5p, and miR-155 commonly packaged in 

exosomes have been shown to induce β-cell 

apoptosis, highlighting their role in disease 

initiation (Jayaseelan and Arumugam, 2019). 

Similarly, exosomes from antigen-presenting cells 

such as dendritic cells and B cells carry peptide-

loaded major histocompatibility complex (MHC) 

molecules, which can directly activate 

autoreactive T cells (Shenoda and Ajit, 2016). In 

systemic lupus erythematosus (SLE), exosomes 

from patient serum are enriched with pro-

inflammatory cytokines, autoantibodies, and 

nucleic acid fragments. These contribute to 

immune complex formation and type I interferon 

pathway activation hallmarks of lupus flares (Chan 

et al., 2019). In rheumatoid arthritis (RA), synovial 

fluid-derived exosomes have been found to 

encapsulate citrullinated proteins and TNF-α, 

correlating with joint inflammation and 

radiographic damage. 

Table 1. Exosome-associated Biomarkers in Autoimmune Diseases 
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Sources: Jayaseelan and Arumugam (2019); Chan et al. (2019); Shenoda and Ajit (2016) 

3.3.2 Exosomes in Viral and Bacterial Infections 

In the context of viral infections, exosomes serve 

dualistic roles: they may propagate infection by 

transporting viral elements, or support immunity 

by amplifying host defences. Exosomes secreted 

from HIV-infected cells, for instance, carry viral 

Nef protein, TAR-RNA, and co-receptors such as 

CCR5 and CXCR4, enhancing viral spread and 

immune escape (Hussain, Zhao and Rahman, 

2022). Conversely, exosomes from innate immune 

cells can shuttle antiviral restriction factors (e.g., 

APOBEC3G, IFITM3), thereby suppressing viral 

replication. 

Exosomes also play roles in hepatitis C virus (HCV) 

infection, where they serve as vehicles for HCV 

RNA transfer between hepatocytes, bypassing 

neutralising antibodies and contributing to viral 

persistence. Moreover, exosomes have emerged 

as contributors to antiviral drug resistance 

through the horizontal transfer of drug-

resistance-associated proteins and RNAs (Joseph, 

Wang and Lee, 2021). 

Table 2. Exosomal Interactions in Viral Infections 

 

 

 

 

Virus Exosomal 

Component 

Functional 

Impact 

HIV Nef, TAR-RNA, Immune evasion 

CCR5, CXCR4 and increased 

infectivity 

HCV Full-length 

viral RNA 

Antibody escape, 

persistence 

Influenza 

A 

M2 protein, 

miR-483-3p 

Suppression of 

the IFN-β 

pathway 

Sources: Joseph et al. (2021); Hussain, Zhao and 

Rahman (2022) 

3.3.3 Immunotherapeutic and Diagnostic 

Implications 

Due to their stability and molecular diversity, 

exosomes are now under investigation as 

precision diagnostic tools and therapeutic agents. 

In autoimmune diseases, exosomal miRNAs serve 

as dynamic biomarkers capable of tracking 

disease exacerbation or remission phases. 

Similarly, in infectious diseases, the profiling of 

pathogen-derived exosomal components may 

enhance early detection and treatment response 

monitoring. In neurodegenerative disorders such 

as Alzheimer’s disease, exosomes bearing tau and 

β-amyloid proteins offer early diagnostic 

potential, while in cancer, exosomal HER2 and CEA 

have been incorporated into clinical workflows for 

prognostic evaluation. These findings reflect the 

growing consensus that exosomal proteomics can 

underpin the stratification of patient-specific 

therapies in precision medicine. 

Clinical Implications of Exosome-based Profiling 

• Real-time disease activity tracking in SLE 

and RA 

Disease Exosomal Cargo Source Pathological Role 

T1DM miR-142-3p, miR-155 T lymphocyte-derived 

exosomes 

Induction of β-cell apoptosis 

SLE Autoantibodies, dsDNA, IFN-inducible 

RNAs 

Circulating serum exosomes Immune complex formation 

RA Citrullinated peptides, TNF-α Synovial fluid exosomes Joint inflammation & cartilage 

damage 
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• Early detection of HIV viral rebound 

during therapy 

• Detection of cancer resistance mutations 

(e.g., KRAS, EGFR) in exosomes 

• Monitoring neuroinflammation in 

multiple sclerosis through CSF exosomes 

Exosomes play multifaceted roles in mediating 

immune regulation, pathogen spread, and 

autoimmune disruption. Their utility spans from 

molecular diagnostics to immunotherapeutic 

innovation, supported by advances in mass 

spectrometry and high-throughput profiling 

technologies. By decoding the proteomic and 

transcriptomic contents of exosomes, researchers 

and clinicians can not only identify disease-

specific signatures but also tailor therapeutic 

interventions. Thus, exosomal proteomics 

emerges as a frontier for biomarker discovery, 

personalised medicine, and disease surveillance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Mechanisms of Exosome-Mediated Immune Modulation in Autoimmune and Infectious Diseases. 

Adapted from El Safadi, D., Mokhtari, A., Krejbich, M., Lagrave, A., Hirigoyen, U., Lebeau, G., Viranaicken, W., & 

Krejbich-Trotot, P. (2024). “Exosomes are double-edged swords during infection…”

 

 

This schematic elegantly illustrates the dualistic 

immunomodulatory roles of exosomes in health 

and disease. On one hand, pathogen-derived or 

infected-cell exosomes act as immune evasion 

tools, transporting viral proteins, pathogen-

associated molecular patterns (PAMPs), or 

inhibitory miRNAs to recipient cells to facilitate 

viral persistence and immunosuppression. On the 

other hand, exosomes derived from immune cells 

or stem cells can enhance innate immunity, 

delivering antiviral miRNAs, cytokines, or antigenic 

peptides capable of stimulating  

 

 

dendritic cells, T cells, and natural killer (NK) cells. 

The same figure encompasses exosomal functions 

in autoimmune contexts, such as antigen 

presentation (e.g., MHC-peptide complexes) and 

pro-inflammatory cargo, which exacerbate tissue 

pathology in diseases like SLE and RA. At its core, 

the schematic illustrates how exosomal proteomic 

content informs immune modulation, targeting 

and stratifying patients across infectious, 

autoimmune, neurodegenerative, and oncological 

conditions, thus representing a central tool in 

precision medicine. 
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4. Role of Exosomal Proteomics in Monitoring 

Drug Resistance and Assessing Response 

Prediction 

4.1 Detection of Diagnostic and Predictive 

Biomarkers 

The proteomic profiling of exosomes has emerged 

as a vital approach for predictive modelling in 

oncology, particularly in the personalisation of 

cancer therapies. Exosomal proteins reflective of 

the molecular state of originating tumour cells 

can serve as non-invasive indicators of drug 

sensitivity, thereby enhancing therapeutic 

stratification and outcome prediction. This 

modality permits the continuous monitoring of 

disease dynamics and treatment efficacy through 

a liquid biopsy framework, offering a real-time 

view of tumour evolution and drug response 

(Kalluri and LeBleu, 2020). 

In non-small cell lung cancer (NSCLC), the analysis 

of exosomal proteins has proven particularly 

valuable in evaluating response to epidermal 

growth factor receptor (EGFR)-targeted 

therapies. The presence of mutant EGFR in 

exosomes isolated from plasma samples provides 

insight into potential responsiveness to tyrosine 

kinase inhibitors (TKIs). Notably, Sandfeld-Paulsen 

et al. (2016) demonstrated that elevated levels of 

exosomal EGFR and specific mutation signatures 

were predictive of favourable outcomes with 

EGFR-TKI treatment. These findings underline the 

potential of blood-derived exosomes as surrogate 

biomarkers for guiding therapeutic decisions, 

enabling clinicians to forecast treatment efficacy 

and pre-emptively adjust strategies based on 

molecular cues. 

Beyond EGFR, tumour-derived exosomes 

encapsulate a myriad of signalling molecules and 

protein fragments that reflect the tumour’s 

adaptive landscape. For example, the detection of 

exosomal markers associated with tumour 

necrosis factor-alpha (TNF-α) signalling pathways 

suggests a mechanistic link to metastasis and 

treatment resistance. Such insights inform 

clinicians of actionable molecular targets, aiding 

in the early identification of resistance 

mechanisms and facilitating intervention before 

metastatic dissemination (Xu et al., 2020). 

Furthermore, the clinical utility of exosomal 

proteomics extends beyond oncology. In 

neurodegenerative disorders, autoimmune 

conditions, and viral infections, exosomal protein 

signatures offer a window into pathological 

processes that are otherwise difficult to monitor. 

The differential expression of disease-specific 

exosomal proteins facilitates early diagnosis, 

tracks therapeutic impact, and supports 

personalised care planning (Witwer and Théry, 

2019; Yanez-Mo et al., 2015). 

In summary, the ability to decode the exosomal 

proteome equips physicians with molecular-level 

insight, allowing for precise and adaptive 

treatment strategies. This enhances not only 

diagnostic accuracy but also therapeutic 

specificity, accelerating the integration of 

exosome-based biomarkers into precision 

medicine frameworks. 

4.2 Monitoring Resistance Mechanisms 

The emergence of therapeutic resistance remains 

a formidable obstacle in the management of 

cancer and other complex diseases. Recent 

advances in exosomal proteomics have enabled 

dynamic, real-time monitoring of resistance 

pathways, thereby offering insights into cellular 

adaptation processes under therapeutic pressure. 

Exosomes, as nanoscale extracellular vesicles, 

function not only as messengers of intercellular 

communication but also as vectors of drug 

resistance, reflecting phenotypic and proteomic 

shifts occurring in tumour cells during exposure 

to chemotherapy, targeted agents, or 

immunotherapies. Of particular interest is 

exosome-mediated chemoresistance, a rapidly 

advancing domain in oncological research. These 

vesicles are known to encapsulate and transfer 

drug efflux transporters such as P-glycoprotein (P-

gp), thereby facilitating the active removal of 

chemotherapeutic agents from intracellular 

compartments. This mechanism significantly 

undermines drug efficacy and contributes to 

treatment failure. Chen et al. (2018) 

demonstrated that exosomes isolated from drug-

resistant breast and ovarian cancer cells exhibit 

enriched levels of P-gp and other resistance-
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associated proteins, facilitating the horizontal 

transfer of resistance phenotypes within tumour 

populations. 

Quantitative proteomic profiling of exosomes 

collected longitudinally from patients undergoing 

chemotherapy allows for the early detection of 

resistance biomarkers, including ATP-binding 

cassette (ABC) transporters such as P-gp and 

ABCG2. Monitoring such signatures can provide 

actionable insights into evolving resistance, 

enabling clinicians to modify therapeutic 

regimens before clinical resistance manifests fully 

(Chen et al., 2018; Kalluri and LeBleu, 2020).Beyond 

drug efflux mechanisms, exosomes also carry a 

diverse array of pro-survival molecules, including 

epithelial–mesenchymal transition (EMT)-related 

transcription factors, DNA repair enzymes, and 

anti-apoptotic proteins, which collectively 

promote tumour cell resilience under therapeutic 

duress (Kowal et al., 2016). The exosomal 

proteome thus serves as a responsive indicator of 

tumour plasticity, capturing the dynamic shifts in 

oncogenic signalling and molecular defence 

strategies. Early identification of such proteomic 

shifts facilitates pre-emptive intervention and the 

potential circumvention of full-scale therapeutic 

resistance. 

Furthermore, stromal components of the tumour 

microenvironment, such as cancer-associated 

fibroblasts (CAFs), are also implicated in 

resistance propagation through their exosomal 

secretions. These exosomes are enriched in 

cytokines, growth factors, and regulatory RNAs 

that modulate tumour cell survival and modulate 

immune evasion mechanisms (Whiteside, 2016). 

By fostering an environment that supports 

immune suppression, enhanced drug clearance, 

and continued tumour proliferation, stromal-

derived exosomes augment the complexity of 

therapeutic resistance. A comprehensive 

exosomal analysis encompassing both tumour-

derived and stromal-origin exosomes can yield a 

more nuanced understanding of the multilayered 

resistance landscape. Such integrative profiling 

enhances the capacity to detect incipient 

resistance, allowing for timely adjustments to 

therapeutic strategies and fostering precision 

medicine approaches in oncology. 

4.3 Modification of Treatment in Real-Time 

The advancement of exosomal proteomics has 

introduced a transformative paradigm in 

therapeutic monitoring, particularly in enabling 

real-time assessment of treatment efficacy. 

Conventional protocols often rely on imaging or 

tissue biopsy, methods that are typically invasive, 

temporally delayed, and may not reflect the 

tumour’s dynamic molecular state. In contrast, 

exosome-derived liquid biopsies offer a 

noninvasive, repeatable, and temporally 

responsive alternative that facilitates the timely 

evaluation of treatment response (Yu et al., 2017; 

Oeyen et al., 2020). 

Dynamic profiling of exosomal proteomes enables 

the monitoring of proteomic fluctuations 

throughout the treatment course, yielding 

actionable insights into tumour adaptation, the 

emergence of drug resistance, and molecular 

remodelling. For instance, the study by Yu et al. 

(2017) demonstrated that serial analysis of 

exosomal epidermal growth factor receptor 

(EGFR) and human epidermal growth factor 

receptor 2 (HER2) expression provided critical 

insights into shifting tumour phenotypes and 

therapeutic responsiveness. Such real-time 

molecular surveillance permits timely 

intervention—whether through dose adjustment, 

therapy switching, or combination regimens 

based on evolving proteomic data. 

In the context of immunotherapy and molecularly 

targeted agents, exosomal proteomics can serve 

as a functional readout of the immune milieu and 

target engagement. Exosomal markers of immune 

activation, cytokine dynamics, or immune 

checkpoint modulation offer surrogate indicators 

of therapeutic efficacy and immune reactivity (Liu 

et al., 2021). Similarly, in targeted therapy, 

exosome analysis may detect changes in protein 

expression or the emergence of mutations 

conferring resistance, thereby informing the need 

for alternative treatment strategies (Zhang et al., 

2019). 

Moreover, exosome-based liquid biopsies are 

uniquely advantageous for monitoring tumours 

situated in anatomically inaccessible regions or in 
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patients for whom repeated tissue biopsies are 

contraindicated. These minimally invasive assays 

enable frequent sampling, offering a near-

continuous molecular narrative of tumour 

evolution. Exosomal proteomic profiling thus 

provides clinicians with real-time data that guide 

therapeutic decision-making based on current 

oncogenic and resistance landscapes (Royo et al., 

2023). The prognostic and predictive potential of 

exosomal biomarkers also extends to anticipating 

therapeutic response and delineating resistance 

pathways. Exosomal proteins indicative of 

multidrug resistance mechanisms, such as ATP-

binding cassette (ABC) transporters, stress-

response chaperones, and microenvironmental 

modulators, can be detected before overt clinical 

progression, enabling pre-emptive therapeutic 

modifications (Whiteside, 2018; Lee et al., 2022). 

As exosomal profiling continues to evolve, it offers 

a real-time, personalised approach to oncology 

treatment. By integrating exosomal data into 

clinical workflows, oncologists can implement 

adaptive therapy strategies aligned with the 

patient’s dynamic molecular status. This paradigm 

fosters more responsive, targeted, and effective 

treatment regimens, ultimately contributing to 

improved outcomes and minimised toxicity. 

 

 

Figure 3: Mass Spectrometry-Enabled Exosomal Profiling for Adaptive Oncology Therapy. (Source: Wang, X., 

Tian, L., Lu, J. et al. Exosomes and cancer - Diagnostic and prognostic biomarkers and therapeutic 

vehicle. Oncogenesis 11, 54 (2022). 
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This diagram illustrates a comprehensive 

workflow for dynamic, proteomics-based 

oncology treatment monitoring. It begins with 

patient sample collection (such as blood or urine), 

followed by exosome isolation using techniques 

like size-exclusion chromatography or 

immunoaffinity capture. The isolated vesicles 

undergo protein extraction and digestion, 

preparing them for mass spectrometry (MS) 

analysis, where techniques such as LC-MS/MS 

quantify proteome changes. The data is visualised 

on a bioinformatics dashboard, highlighting 

significant protein alterations, such as increased 

expression of EGFR, HER2, or markers of therapy 

resistance. A clinical decision-making wheel then 

integrates these findings, guiding routines such as 

dose escalation, therapy switching, or 

combination regimens. This figure emphasises 

real-time adaptive oncology, where exosomal 

proteomics informs immediate, patient-specific 

therapeutic adjustments. 

5. Developing and Exploiting Exosomes for 

Custom Therapeutic Delivery Systems 

Exosomes are nanoscale vesicles endogenously 

produced by cells to facilitate the intercellular 

transfer of biomolecules, including proteins, lipids, 

and nucleic acids. Their intrinsic biocompatibility, 

low immunogenicity, and capacity to traverse 

biological barriers render them uniquely suited for 

application as therapeutic delivery vectors (Kalluri 

and LeBleu, 2020). Beyond their established role in 

diagnostics, exosomes are being increasingly 

engineered to function as bespoke drug delivery 

systems capable of targeting pathological tissues 

with high specificity, thereby mitigating systemic 

toxicity and off-target effects (Elsharkasy et al., 

2020). Therapeutic customisation is facilitated 

through proteomic profiling and molecular 

engineering, which allow precise modulation of 

both exosomal cargo and membrane 

composition. Such interventions support the 

creation of personalised nanotherapeutics 

tailored to disease-specific molecular signatures, 

thereby enhancing therapeutic precision and 

efficacy (Armstrong and Stevens, 2019). 

5.1 Exosomes as Drug Delivery Vehicles 

A defining advantage of exosomes over synthetic 

nanocarriers is their innate ability to bypass 

physiological barriers such as the blood–brain 

barrier (BBB), a formidable obstacle in central 

nervous system (CNS) drug delivery. This 

capability has been exploited for the delivery of 

small interfering RNAs (siRNAs), microRNAs 

(miRNAs), and pharmacological agents to 

otherwise inaccessible tissues (Barile and Vassalli, 

2017). A seminal study by Alvarez-Erviti et al. (2011) 

demonstrated the efficacy of systemically 

administered exosomes in delivering siRNA to the 

murine brain. In this work, dendritic cells were 

genetically modified to express Lamp2 b, an 

exosomal membrane protein, fused to the rabies 

virus glycoprotein (RVG) peptide, known for its 

affinity to neuronal acetylcholine receptors. These 

bioengineered exosomes were loaded with siRNA 

targeting BACE1, a gene implicated in the 

pathogenesis of Alzheimer’s disease. Following 

systemic injection, the modified exosomes 

successfully traversed the BBB, resulting in 

significant gene silencing within cerebral tissue. 

This pioneering approach underscores the 

potential of surface modification and proteomic 

tagging in transforming exosomes into precision-

targeted delivery platforms. By conjugating 

targeting moieties, such as antibodies or homing 

peptides, to exosomal membranes, researchers 

can achieve selective uptake by pathological cells 

expressing complementary receptors, thereby 

enhancing therapeutic selectivity and reducing 

collateral cytotoxicity (Ha et al., 2016). 

Furthermore, exosomes derived from immune or 

stem cells retain membrane proteins and ligands 

that confer tissue-specific homing capabilities. 

These vesicles, inherently equipped with 

contextual biological cues, can autonomously 

localise to sites of inflammation or tumour 

growth. Leveraging these endogenous trafficking 

signals, researchers are now engineering 

exosomes capable of delivering their payloads in a 

spatiotemporally regulated manner, aligning with 

the goals of precision medicine (Lener et al., 2015; 

Kamerkar et al., 2017). The ongoing elucidation of 

such homing mechanisms and molecular 

targeting pathways is critical to advancing 

exosome-based therapeutics. Future 
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developments may further enhance the 

bioavailability, targeting fidelity, and therapeutic 

payload capacity of these natural nanocarriers, 

paving the way for their routine integration into 

clinical regimens for oncological, neurological, and 

autoimmune conditions. 

5.2 Developing Therapeutic Exosome Proteomes 

A critical frontier in the advancement of exosome-

based therapeutics lies in the comprehensive 

engineering of their proteomic landscape, 

encompassing both surface-associated and 

intravesicular proteins. Therapeutic exosomes can 

be bioengineered to incorporate functional 

proteins, peptides, or signalling molecules 

through the genetic modification of donor cells. 

Techniques such as transfection or CRISPR/Cas-

mediated gene editing are commonly employed to 

induce the expression of therapeutic agents that 

are subsequently packaged into exosomes during 

their biogenesis (El Andaloussi et al., 2013). 

One seminal example of this approach is provided 

by Kamerkar et al. (2017), who engineered 

mesenchymal stem cells (MSCs) to secrete 

exosomes loaded with small interfering RNA 

(siRNA) targeting the oncogenic KRAS^G12D 

mutation, a driver commonly implicated in 

pancreatic ductal adenocarcinoma. Systemic 

administration of these modified exosomes in 

murine models facilitated targeted delivery of the 

siRNA to malignant cells, resulting in KRAS 

suppression, marked tumour regression, and 

prolonged survival. Notably, these exosomes 

exhibited favourable biocompatibility and elicited 

minimal immunogenic responses, an essential 

consideration for clinical translation. 

Beyond their therapeutic payload, engineered 

exosomes offer the potential for dual-functional 

use in theranostics, where diagnosis and therapy 

converge within a single vesicular platform. This is 

achievable by integrating therapeutic 

biomolecules with traceable reporters, such as 

fluorescent proteins or radiolabelled imaging 

agents, enabling clinicians to non-invasively track 

therapeutic distribution and efficacy in real-time 

(Lakhal & Wood, 2011). Such an approach holds 

promise for advancing personalised medicine 

through dynamic treatment monitoring and 

adaptive clinical decision-making. 

Furthermore, the utility of exosome proteome 

engineering extends into immuno-oncology, 

regenerative medicine, and autoimmune disease 

modulation. In cancer immunotherapy, exosomes 

enriched with tumour-associated antigens or 

checkpoint inhibitors can prime host immune 

responses against neoplastic cells, enhancing anti-

tumour efficacy (Pitt et al., 2016). Conversely, 

exosomes harbouring anti-inflammatory 

mediators, such as interleukin-10 (IL-10) or 

transforming growth factor-beta (TGF-β), can 

attenuate hyperactive immune responses in 

autoimmune disorders like multiple sclerosis and 

rheumatoid arthritis, thereby providing targeted 

intervention with reduced systemic toxicity (Wang 

et al., 2021). 

The progressive refinement of exosomal 

proteome engineering, underpinned by 

advancements in molecular biology, 

nanotechnology, and systems immunology, 

continues to shape the translational trajectory of 

exosome-based therapeutics. Future efforts must 

prioritise the standardisation of engineering 

protocols, comprehensive safety profiling, and the 

development of scalable manufacturing platforms 

to enable the clinical adoption of these promising 

nanobiological tools. 

5.3 Surface Receptor Manipulation for Precision 

Targeting 

Effective therapeutic delivery of exosomes 

necessitates precision tissue targeting, which is 

largely governed by the interaction between 

exosomal surface proteins and receptors on 

target cells. The rational engineering of exosomes 

for personalised therapies is contingent upon 

these receptor-ligand dynamics. Notably, 

Wiklander et al. (2019) demonstrated how 

exosomal surface ligands can modulate 

biodistribution. Similarly, Hoshino et al. (2015) 

identified specific integrins, such as α6β4 and 

αvβ5, as critical determinants of organotropism, 

with preferential accumulation in the lungs and 

liver, respectively. Such proteomic "address labels" 

permit the deliberate redirection of exosomes to 
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pathological tissues, optimising their therapeutic 

index. 

Advanced proteomic profiling facilitates the 

identification and manipulation of surface 

receptors to enhance cell-specific uptake. This 

may involve ligand engineering, wherein donor 

cells are genetically modified to express targeting 

moieties such as antibodies or ligands that are 

compatible with exosomal membrane proteins 

(Alvarez-Erviti et al., 2011). These bioengineered 

vesicles are further adaptable through post-

isolation surface functionalisation techniques like 

click chemistry or lipid insertion (Kooijmans et al., 

2016; Jiang et al., 2020), enabling broad-spectrum 

targeting across diverse pathological conditions. 

Such modifications must be tailored to the 

patient's specific molecular landscape. For 

instance, exosomal surfaces can be engineered to 

display ligands that selectively bind to unique 

receptors present on patient-specific tumour 

phenotypes (Tian et al., 2014). This strategy 

enhances therapeutic precision while minimising 

off-target effects and systemic toxicity, 

encapsulating the foundational principles of 

personalised medicine. 

These evolving strategies in exosomal surface 

receptor manipulation reflect a paradigm shift in 

targeted therapy, moving from generalised 

treatment modalities to precision guided 

interventions informed by proteomic and 

genomic insights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Integrin-Mediated Organotropism and Surface Ligand Engineering of Exosomes (Adapted from 

Myint, P.K., Park, E.J., Gaowa, A. et al. Targeted remodeling of breast cancer and immune cell homing niches 

by exosomal integrins. Diagn Pathol 15, 38 (2020). 

 

This schematic illustrates how integrins on 

exosomes influence organ-specific targeting and 

demonstrates engineered surface modifications 

to enhance precision delivery. In panel (a), 

exosomes expressing integrin α6β4 localise to  

 

lung tissue, while those with αvβ5 preferentially 

accumulate in the liver, as outlined in Hoshino et 

al. (2015) and Wiklander et al. (2019). Panel (b) 

depicts strategies for surface engineering: donor 

cells can be genetically modified to overexpress 
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targeting ligands, while post-isolation techniques, 

such as click chemistry or lipid-anchored ligand 

insertion, enable direct functionalisation of 

purified exosomes. The visual emphasises the dual 

potential of proteomic “address labels” and 

chemical modification in guiding exosomes to 

specific tissues, underpinning the strategies 

discussed in Section 5.3. 

6. Integration of Exosomes into Proteomics and 

Precision Medicine Frameworks 

The integration of exosomal proteomics within 

precision medicine marks a transformative shift in 

the pursuit of personalised therapeutic strategies. 

By offering a molecular snapshot of dynamic 

physiological and pathological states, exosomes 

serve as non-invasive, real-time biosensors 

capable of tracking disease onset, progression, 

and therapeutic response. When employed within 

a precision medicine framework, especially in 

conjunction with clinical decision support systems 

(CDSSs) and machine learning (ML), exosomal 

proteomics enables stratified treatment 

regimens, refined therapeutic selection, and 

ongoing optimisation of clinical interventions. 

This alignment elevates precision medicine from 

concept to practice, anchoring it in robust 

molecular data. 

6.1 Multi-Omics Synergy 

The convergence of exosomal proteomics with 

other high-throughput platforms such as 

genomics, transcriptomics, metabolomics, and 

epigenomics represents a hallmark of systems 

biology. Each omic layer reveals distinct yet 

complementary aspects of cellular function: 

genomic data describes genetic predisposition; 

transcriptomic profiles reflect gene expression 

levels; and proteomic datasets indicate functional 

execution through active protein species. 

Exosomal proteomics adds a further spatial and 

temporal lens, capturing secreted peptide 

fragments actively participating in intercellular 

communication. 

As demonstrated by Huang et al. (2020), 

combining exosomal proteomic and 

transcriptomic data in glioblastoma enabled 

deeper exploration into tumour heterogeneity 

and resistance mechanisms. Their work showed 

incongruity between cellular mRNA and exosomal 

protein expression, highlighting the vital 

contribution of post-transcriptional and 

translational modifications, phenomena only 

detectable through proteomic analysis. 

By integrating these data streams, researchers 

can build comprehensive molecular signatures 

specific to individual patients. For example, a 

cancer patient exhibiting a KRAS gene mutation 

(genomics), elevated KRAS mRNA transcripts 

(transcriptomics), and overexpressed KRAS 

protein in circulating exosomes (proteomics) is an 

ideal candidate for anti-KRAS therapy. Conversely, 

if only the transcriptomic layer is elevated while 

proteomic signals are absent, this may indicate 

translational silencing, proteasomal degradation, 

or epigenetic suppression, suggesting that the 

therapeutic approach should be reconsidered. 

Multi-omics integration thus enhances diagnostic 

accuracy and enables the discovery of novel 

therapeutic targets. In diseases such as 

Alzheimer’s disease, lupus erythematosus, or 

rheumatoid arthritis where overlapping clinical 

symptoms obscure molecular diversity integrative 

exosome-based omics can disentangle pathogenic 

pathways, enabling more precise diagnostics and 

targeted treatments. 

6.2 AI/ML for Patient Stratification 

Machine learning (ML) has emerged as a critical 

analytical tool in the exploration of proteomic 

datasets, particularly those derived from 

exosomes, due to its capacity to manage the 

complexity and high dimensionality of such data. 

Exosomes, classified as nanoscale extracellular 

vesicles, encapsulate a diverse range of proteins, 

nucleic acids, and lipids, rendering them rich 

molecular messengers that mirror cellular 

physiological states. Integrating ML into exosome 

proteomics facilitates the discovery of disease-

specific biomarkers and enhances predictive 

modelling of disease trajectories, thereby 

propelling translational research and clinical 

implementation (Kumar, 2024). 
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In proteomic applications, ML addresses pivotal 

challenges across experimental design, data 

curation, and analytical pipelines by uncovering 

intricate relationships often overlooked by 

conventional statistical techniques (Kelchtermans 

et al., 2014). The efficacy of ML in proteomic 

analyses is bolstered by access to expansive and 

high-fidelity repositories such as ProteomeTools 

and MassIVE-KB, which underpin the training of 

predictive models with improved generalisability 

(Dens et al., 2024). 

ML frameworks have been instrumental in 

accelerating high-throughput biomarker 

discovery, particularly in oncology, by refining the 

identification of tumour-associated proteins for 

early diagnosis, prognostic evaluation, and risk 

stratification (Fu et al., 2024). Furthermore, deep 

learning advanced ML subclass has exhibited 

notable success in proteomics through 

applications such as chromatographic retention 

time forecasting, MS/MS spectral prediction, and 

protein structural inference, showcasing its 

adeptness at distilling abstract data 

representations from complex inputs (Wen et al., 

2020).Despite these advances, considerable 

obstacles persist, including the standardisation of 

data formats and the development of transparent, 

interpretable models suitable for clinical 

validation (Adeyanju and Ogunjobi, 2024; Ahmad 

et al., 2021). Nonetheless, the integration of ML 

into exosome proteomics holds substantial 

promise in refining patient stratification and 

driving molecularly tailored interventions central 

to the ethos of personalised medicine. 

The utilisation of exosome-derived proteomic 

signatures, combined with unsupervised 

clustering, has shown efficacy in delineating 

patient subsets in autoimmune diseases. For 

instance, Skogberg et al. (2020) demonstrated 

that ML algorithms could stratify patients based 

on exosomal protein profiles, corresponding to 

variations in treatment response and disease 

progression. This aligns with findings in 

rheumatoid arthritis (RA), where Ferreira et al. 

(2023) applied unsupervised clustering to plasma 

proteomes, unveiling two clinically distinct RA 

subgroups with divergent TNF receptor 

superfamily expression. Likewise, López-Pedrera 

et al. (2022) used serum proteomics to 

differentiate systemic lupus erythematosus (SLE) 

phenotypes associated with nephropathy and 

inflammatory markers. 

In multiple sclerosis (MS), Gross et al. (2023) 

identified immunological endophenotypes via 

blood-based proteomic profiling, which 

corresponded to disease progression rates and 

treatment responsiveness. Such studies 

underscore the capacity of proteomics-driven 

stratification to enhance disease classification and 

individualised therapeutic planning. Moreover, 

O'Neil et al. (2021) demonstrated that ML-

enhanced proteomic models accurately 

forecasted RA flares, exemplifying the 

translational value of this approach. The 

recurrence of stratification patterns across 

autoimmune conditions implies the broader 

applicability of these techniques in precision 

immunology (Barturen et al., 2020; Kruta et al., 

2024). 

In oncology, the convergence of supervised ML 

techniques, including random forests, support 

vector machines (SVMs), and deep learning 

architectures, has advanced the development of 

robust predictive models for immunotherapy 

outcomes based on exosomal biomarkers such as 

PD-L1, CTLA-4, and tumour-associated antigens. 

These models enable dynamic refinement of 

predictions as additional exosomal data become 

available, supporting real-time clinical integration 

(Xie et al., 2023; Sinha et al., 2024).AI facilitates 

biomarker filtration, transforming extensive 

proteomic datasets into clinically actionable 

insights by isolating minimal yet highly 

informative biomarker panels. This streamlines 

assay development and facilitates regulatory 

approval (Arzumanyan, 2023; Olawade et al., 

2025). AI-driven models have demonstrated 

competency in predicting immunotherapy 

response, progression-free survival, and overall 

survival, particularly in malignancies such as non-

small cell lung carcinoma (NSCLC), albeit with 

persisting challenges in data quality, 

interpretability, and reproducibility (Lu et al., 2023; 

Erisa, 2024). 
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Additionally, AI contributes to the identification of 

novel therapeutic targets and optimises 

therapeutic regimens by triangulating proteomic 

data with genomic and transcriptomic inputs 

(Olawade et al., 2025; Erisa, 2024). Ongoing efforts 

to develop interpretable AI tools aim to enhance 

model transparency and clinician trust, which are 

essential for regulatory and clinical adoption 

(Sinha et al., 2024). Despite regulatory, ethical, 

and infrastructural barriers, the integration of 

AI/ML into exosome proteomics remains a 

transformative avenue for realising the goals of 

precision oncology (Li et al., 2024). 

6.3 Clinical Decision-Support Systems (CDSS) 

The integration of exosomal proteomics into 

precision medicine reaches its critical operational 

threshold with the implementation of clinical 

decision-support systems (CDSSs). These digital 

platforms synthesise patient data, encompassing 

electronic health records, imaging, genomic 

information, and now proteomic signatures, to 

generate evidence-based clinical 

recommendations. By cross-referencing individual 

patient profiles with a validated medical 

knowledge base, CDSSs assist clinicians in making 

accurate diagnoses, selecting optimal treatments, 

and determining appropriate follow-up actions 

(Osheroff et al., 2012). 

The inclusion of exosome-derived proteomic data 

into CDSS algorithms offers a transformative 

pathway toward individualised therapeutic 

interventions. For instance, elevated levels of 

exosomal human epidermal growth factor 

receptor 2 (HER2) in a patient with breast cancer 

may prompt the system to recommend HER2-

targeted therapy such as trastuzumab, aligning 

treatment with molecular pathology (Gámez-

Valero et al., 2019). Similarly, CDSSs may detect 

high expression of resistance-associated proteins 

such as ATP-binding cassette sub-family C member 

1 (ABCC1) within exosomal profiles, thus informing 

clinicians of the need for intensified monitoring or 

alternative therapeutic strategies (Kalluri and 

LeBleu, 2020). 

Contemporary CDSS architectures increasingly 

incorporate machine learning (ML) models 

capable of adapting recommendations 

dynamically based on longitudinal datasets. These 

systems automatically update patient 

stratification or adjust therapy suggestions upon 

the acquisition of new proteomic data, such as 

from sequential liquid biopsies (He et al., 2022). 

This adaptability enhances the real-time clinical 

utility of exosome profiling, enabling precision 

medicine to evolve with the patient’s disease 

trajectory. 

Additionally, the use of cloud-based, interoperable 

CDSS platforms facilitates data integration across 

institutions, expanding the scope for collaborative 

proteomics research and the refinement of 

artificial intelligence (AI) training datasets. Such 

infrastructure supports the transition of exosomal 

biomarkers from research tools to clinically 

actionable datasets, enhancing diagnostic 

specificity, therapeutic efficacy, and health system 

efficiency (van der Veer et al., 2021). The fusion of 

exosomal proteomics with CDSS not only 

operationalises multi-omic data but also embodies 

the practical implementation of personalised 

medicine. Through rigorous data integration and 

real-time analytics, exosome-informed CDSSs hold 

the potential to significantly improve clinical 

outcomes by delivering tailored treatment 

regimens based on molecular evidence. 

 

 

 

 

Figure 5: Exosomal Proteomic Integration in 

Clinical CDSS. (Source: Fan, S. and Poetsch, A., 

2023. Proteomic research of extracellular vesicles 

in clinical biofluids. Proteomes, 11(2), p.18). 

This figure presents a schematic overview of the 

clinical pipeline linking exosomal proteomic 

analysis to CDSS platforms. Beginning with patient 

biofluids (e.g., plasma, serum, urine), it shows 

exosome isolation followed by proteomic profiling 

via mass spectrometry. Detected biomarkers, 

such as HER2 or ABCC1, are then processed by a 
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CDSS engine, which integrates additional patient 

data (genomics, imaging, medical history). The 

system generates tailored recommendations, 

such as targeted therapy, surveillance protocols, 

or adjusted follow-up schedules. The illustration 

also emphasises ML-driven feedback loops: 

updated proteomic data from subsequent liquid 

biopsies refine patient risk stratification and 

therapeutic decisions in real time. 

7. Challenges and Opportunities in Clinical 

Translation 

As with other 'omics' technologies, the application 

of exosomal proteomics in personalised medicine 

presents substantial potential but faces 

considerable translational challenges. These 

include technical variability, regulatory 

uncertainty, infrastructural limitations, and the 

absence of scalable solutions. The clinical 

integration of these technologies requires a 

harmonised, interdisciplinary approach involving 

researchers, clinicians, regulators, and policy-

makers to address the evolving landscape of 

diagnostic and therapeutic innovation. 

7.1 Standardisation and Reproducibility 

A significant bottleneck in translating exosomal 

proteomics into clinical practice lies in the lack of 

unified protocols that ensure analytical 

reproducibility. Although advances in mass 

spectrometry (MS) and isolation technologies 

have improved sensitivity and selectivity, 

disparities persist in the collection, purification, 

and analysis of exosomes across laboratories 

(Yanez-Mo et al., 2015; Mateescu et al., 2017). 

These methodological discrepancies impact not 

only intra-laboratory consistency but also the 

broader replicability of findings across 

institutions, impeding biomarker validation 

efforts. The MISEV2018 guidelines proposed by 

Théry et al. (2018) represent a cornerstone 

attempt at methodological harmonisation within 

the extracellular vesicle (EV) research community. 

These guidelines encourage the use of 

standardised terminology and advocate for 

orthogonal validation methods, such as 

nanoparticle tracking analysis, transmission 

electron microscopy, and immunoblotting for 

CD63, CD81, and TSG101.  

However, widespread adoption remains 

incomplete, particularly in translational and 

clinical contexts, where rigorous implementation 

of quality assurance programmes (QAPs) is still 

lacking (Witwer et al., 2021).The biological source 

of exosomes (e.g., plasma, cerebrospinal fluid, or 

urine) introduces additional variability in protein 

yield and purity, further complicated by 

inconsistencies in MS-based workflows such as 

enzymatic digestion, chromatography, and data 

analysis pipelines (Kalra et al., 2012; Liu et al., 

2021). These limitations compromise the 

reproducibility of proteomic findings and hinder 

the development of universally accepted 

reference standards. Initiatives such as EV-TRACK 

(Van Deun et al., 2017) have been instrumental in 

promoting transparency and encouraging 

standardised metadata reporting. Concurrently, 

commercial vendors have introduced validated 

exosome isolation kits and scalable analytical 

platforms to address reproducibility gaps. Efforts 

are also underway to establish centralised 

repositories of reference materials and exosomal 

protein markers, which are essential for inter-

study comparability (Coumans et al., 2017). 

7.2 Regulatory Considerations for Exosome 

Diagnostics and Therapeutics 

From a regulatory perspective, exosome-based 

diagnostics and therapeutics must navigate a 

complex approval landscape. For diagnostics, 

exosome-derived biomarkers must undergo 

rigorous analytical and clinical validation to meet 

the approval standards of regulatory agencies 

such as the FDA and EMA. These requirements 

include the demonstration of assay reproducibility 

across different sites, platforms, and cohorts - 

standards that many current studies fail to meet 

(Heath et al., 2020). For therapeutic applications, 

engineered exosomes encapsulating siRNA, 

CRISPR-Cas9 elements, or pharmacological agents 

are regulated as biological products, necessitating 

Investigational New Drug (IND) and Biologics 

License Applications (BLA). These pathways 

demand extensive characterisation of batch 

consistency, immunogenicity, long-term safety, 
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and scalability. Furthermore, concerns persist 

regarding the bioengineering modifications 

applied to exosomes, which may affect their 

stability and biocompatibility (Antimisiaris et al., 

2021). 

Despite these obstacles, recent developments 

signal growing institutional support. The FDA’s 

Breakthrough Devices Program has expedited the 

review of liquid biopsy platforms that utilise 

exosomal content, fostering a more adaptive 

regulatory environment for novel diagnostic tools 

(Feng et al., 2022). In parallel, industry-led 

initiatives are refining GMP-compliant exosome 

manufacturing and quality control systems, laying 

the groundwork for scalable clinical applications. 

In summary, while substantial hurdles remain, a 

confluence of standardisation initiatives, 

technological advancements, and evolving 

regulatory frameworks is gradually propelling 

exosomal proteomics from bench to bedside. 

 

Figure 6: Translational Pathway of Exosomal 

Biomarkers from Discovery to Clinical 

Implementation. (Adapted from Adamiak, M. and 

Sahoo, S., 2018, “Exosomes in myocardial repair: 

Advances…”) 

This figure presents a comprehensive, circular 

flowchart detailing the stepwise translational 

pathway for exosome-based biomarkers. Starting 

at the discovery phase, candidate biomarkers are 

identified through proteomic and genomic 

analyses of exosomes isolated from relevant 

biological sources. Next, isolation and 

characterisation occur, using techniques such as 

ultracentrifugation, size-exclusion 

chromatography (SEC), nanoparticle tracking 

analysis (NTA), and Western blotting, to ensure 

high purity and vesicle integrity. In the analytical 

validation stage, methods like LC-MS/MS, 

quantitative PCR, or immunoassays are employed 

to confirm biomarker presence and function. The 

pathway progresses to clinical validation, involving 

large, multi-centre cohort studies to assess 

diagnostic and prognostic utility. Subsequently, 

regulatory approval is sought from bodies like the 

FDA and EMA, requiring rigorous data on assay 

reproducibility, multi-site consistency, and clinical 

effectiveness. Finally, successful biomarkers are 

implemented in diagnostics or therapeutics, 

enabling personalised medicine applications such 

as targeted drug delivery, disease monitoring, or 

stratified treatment planning. This visual 

highlights specific chokepoints, particularly in 

characterisation, validation, and regulatory 

alignment, where proactive intervention is 

essential to advance clinical translation. 

7.3 Novel Approaches 

Innovative platforms are now emerging to 

circumvent longstanding challenges in exosomal 

proteomics, including next-generation liquid 

biopsy technologies and microfluidic-based 

systems. These advances have significantly 

enhanced analytical sensitivity and enabled real-

time, point-of-care biomarker detection, thereby 

improving clinical decision-making and patient 

outcomes. For instance, Chen et al. (2020) 

introduced a lab-on-a-chip device designed for the 

precise immunoaffinity capture and mass 

spectrometry-based analysis of exosomal proteins 

from peripheral blood. This integrated platform 

reduces sample processing variability and 

expedites throughput by eliminating the need for 

manual handling by multiple personnel. Its 

automation, scalability, and cost-effectiveness 

render it particularly attractive for both academic 

and clinical research environments. The 

integration of machine learning algorithms with 

exosome assays further amplifies diagnostic 

capability. These computational tools facilitate 

signal enhancement and biomarker identification 

by processing complex proteomic datasets to 

uncover subtle signatures predictive of disease 

onset, resistance to treatment, or recurrence. 

Such predictive modelling offers the potential for 
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highly individualised therapeutic interventions 

tailored to patient-specific molecular profiles. 

Cross-disciplinary initiatives involving academic 

institutions, regulatory agencies, and private 

enterprises are increasingly forming collaborative 

frameworks to validate exosome-derived 

biomarkers. These public–private partnerships not 

only promote standardisation but also accelerate 

the development of clinical trials, regulatory 

approval processes, and long-term adoption. They 

serve as a crucial platform for harmonising best 

practices, establishing benchmarking metrics, and 

facilitating knowledge transfer across sectors. 

Although the implementation of exosomal 

proteomics in routine clinical settings is still 

hindered by regulatory complexities, 

reproducibility limitations, and methodological 

inconsistencies, recent progress provides grounds 

for cautious optimism. The adoption of consensus 

frameworks such as MISEV2018 (Théry et al., 

2018), advancements in microfluidics, and the 

evolution of regulatory guidelines tailored for 

biologics collectively signify a paradigm shift. 

These developments are driving the field towards 

clinically viable, scalable, and standardised 

protocols. As the molecular diagnostic landscape 

continues to evolve, exosome technologies are 

positioned to redefine precision medicine. Their 

capacity to provide deep, non-invasive molecular 

insights from treatment stratification to 

monitoring therapeutic response and disease 

progression, holds transformative potential. 

Ultimately, these emerging tools support a 

proactive model of care that is both patient-

specific and dynamically responsive throughout 

the disease continuum. 

8. Conclusion 

The exploration of exosomal proteomics within 

the domain of personalised medicine continues to 

offer transformative prospects for disease 

diagnosis, prognostication, and therapeutic 

intervention. As highlighted throughout this 

review, the capacity of exosomes to encapsulate 

and transport proteins reflective of their cellular 

origin presents an unparalleled opportunity to 

decode complex pathophysiological processes in a 

minimally invasive manner. Their utility spans 

diverse clinical applications from early disease 

detection and therapeutic monitoring to real-time 

delivery of biomolecular interventions 

underscoring their potential as next-generation 

diagnostic and therapeutic vectors (Kalluri & 

LeBleu, 2020; Simons & Raposo, 2009). 

Proteomic profiling of exosomes, enabled through 

advances in mass spectrometry and data 

analytics, has revealed nuanced insights into cell–

cell communication, tumour microenvironment 

dynamics, and systemic pathological changes. 

Notably, the precision with which exosomes 

represent the proteomic landscape of parent cells 

makes them well-suited for stratifying patient 

responses, tracking therapeutic resistance, and 

enabling tailored treatment protocols (Yáñez-Mó 

et al., 2015; Hoshino et al., 2015). The integration 

of exosomal proteomics with multi-omics 

platforms, such as genomics, transcriptomics, and 

metabolomics, alongside machine learning and 

artificial intelligence, further amplifies their 

predictive and interpretive power (Cheng et al., 

2021). 

Despite these advances, critical gaps remain. The 

field continues to grapple with reproducibility 

concerns due to heterogeneity in exosome 

isolation, inconsistencies in proteomic 

methodologies, and the absence of universally 

accepted reference standards (Théry et al., 2018; 

Van Deun et al., 2017). Moreover, regulatory 

frameworks for clinical-grade exosome 

deployment remain fragmented, with limited 

standardisation across jurisdictions and an urgent 

need for harmonised policy development. These 

limitations currently restrict the full clinical 

exploitation of exosome-derived protein 

biomarkers. However, ongoing efforts to address 

these limitations, including the establishment of 

global databases such as ExoCarta and EVpedia, 

and community led initiatives like EV-TRACK are 

accelerating the push toward methodological 

coherence and data transparency (Mathivanan & 

Simpson, 2009; Kim et al., 2015). In parallel, 

innovations in exosome engineering, including 

surface protein modification and targeted loading 

strategies, are paving the way for personalised 

nanoscale therapeutics capable of delivering site-

specific interventions with high precision and 
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reduced off-target effects (Luan et al., 2017; Vader 

et al., 2016). 

Future advancements will hinge on the successful 

translation of these technologies into the clinical 

setting. This requires multi-centre validation 

studies, scalable and reproducible manufacturing 

pipelines, and investment in integrated 

diagnostics such as lab-on-a-chip platforms. 

Interdisciplinary collaboration among clinicians, 

biologists, data scientists, and regulatory 

stakeholders is essential to catalyse this 

translation. Finally, exosomal proteomics 

encapsulates a convergence of precision, 

adaptability, and innovation that aligns with the 

vision of personalised medicine. If 

methodological, regulatory, and translational 

challenges can be overcome, exosomes have the 

potential to transition from experimental entities 

into central pillars of modern medicine. As 

research matures, its integration into clinical 

workflows will not only revolutionise patient-

specific healthcare but also contribute to a more 

predictive, preventative, and personalised 

therapeutic paradigm. 
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