Vol. 2 No. 2 (2023): International Journal of Applied Technology in Medical Sciences
Articles

The Functionality of Nano Biosensors in Detecting Lung Cancer: A Review

Published 2023-10-29

Keywords

  • graphene oxide,
  • bio-Nano sensor,
  • lung cancer,
  • DNA,
  • deletion mutation

How to Cite

The Functionality of Nano Biosensors in Detecting Lung Cancer: A Review. (2023). International Journal of Applied Technology in Medical Sciences, 2(2), 12-22. https://doi.org/10.54878/79set056

Abstract

Nowadays, lung cancer is one of the most common diseases worldwide and has the highest mortality rate among all types of cancers. Therefore, early diagnosis of this disease is of special importance. Due to the high cost and time requirements of traditional lung cancer detection methods, there has been a recent emphasis on developing more affordable and efficient alternatives. In recent years, significant progress in nanotechnology and the development of various nanomaterials has led to increased activity in the field. Recent studies suggest that graphene oxide nanomaterials have high potential for designing bio-nano sensors to detect lung cancer due to their unique properties. This research presents a biosensor based on a graphene oxide-DNA nanohybrid for identifying deletion mutations that cause lung cancer. The mutations are identified using a FAM-labeled DNA probe and fluorescence spectroscopy. Additionally, graphene oxide was synthesized based on Hamer’s method and verified using FT-IR, UV-Vis, and TEM imaging.” 

References

  1. Alberg AJ, Brock MV, Samet JM. Epidemiology of lung cancer: looking to the future. J Clin Oncol. 2005;23(14):3175-85.
  2. Luo SY, Lam DC. Oncogenic driver mutations in lung cancer. Transl Respir Med. 2013;1(1):6.
  3. Ridge CA, McErlean AM, Ginsberg MS. Epidemiology of lung cancer. Semin Intervent Radiol. 2013;30(2):93-8.
  4. Travis WD. Update on small cell carcinoma and its differentiation from squamous cell carcinoma and other non-small cell carcinomas. Mod Pathol. 2012;25 Suppl 1:S18-30
  5. Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Nikšić M, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391(10125):1023-75.
  6. Thandra KC, Barsouk A, Saginala K, Aluru JS, Barsouk A. Epidemiology of lung cancer. Contemp Oncol (Pozn). 2021;25(1):45-52.
  7. Walser T, Cui X, Yanagawa J, Lee JM, Heinrich E, Lee G, et al. Smoking and lung cancer: the role of inflammation. Proc Am Thorac Soc. 2008;5(8):811-5.
  8. Riudavets M, Garcia de Herreros M, Besse B, Mezquita L. Radon and Lung Cancer: Current Trends and Future Perspectives. Cancers (Basel). 2022;14(13).
  9. Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med. 2011;32(4):605-44.
  10. Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther. 2020;5(1):90.
  11. Goh KY, Lim W-T. Cyclin D1 expression in KRAS mutant non-small cell lung cancer—old wine into new skins. Translational Lung Cancer Research. 2020;9(6):2302-4.
  12. van Beek EJ, Mirsadraee S, Murchison JT. Lung cancer screening: Computed tomography or chest radiographs? World J Radiol. 2015;7(8):189-93.
  13. Hirsch FR, Franklin WA, Gazdar AF, Bunn PA, Jr. Early detection of lung cancer: clinical perspectives of recent advances in biology and radiology. Clin Cancer Res. 2001;7(1):5-22.
  14. Mauro C, Passerini R, Spaggiari L, Galetta D, Radice D, Lentati P, et al. New and old biomarkers in the differential diagnosis of lung cancer: Pro-gastrinreleasing peptide in comparison with neuron-specific enolase, carcinoembryonic antigen, and CYFRA 21- 1. The International Journal of Biological Markers. 2019;34(2):163-7.
  15. Naresh V, Lee N. A Review on Biosensors and Recent Development of Nanostructured MaterialsEnabled Biosensors. Sensors. 2021;21(4):1109.
  16. Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays in Biochemistry. 2016;60(1):1-8.
  17. Senf B, Yeo W-H, Kim J-H. Recent Advances in Portable Biosensors for Biomarker Detection in Body Fluids. Biosensors. 2020;10(9):127.
  18. Ramesh M, Janani R, Deepa C, Rajeshkumar L. Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications. Biosensors. 2023;13(1):40.
  19. Malik P, Gupta R, Malik V, Ameta RK. effective, fast, and easy to implement. However, further studies are required to validate the accuracy and reliability of this biosensor for lung cancer detection.
  20. Joseph TM, Kar Mahapatra D, Esmaeili A, Piszczyk Ł, Hasanin MS, Kattali M, et al. Nanoparticles: Taking a Unique Position in Medicine. Nanomaterials. 2023;13(3):574.
  21. Huang X, Zhu Y, Kianfar E.
  22. Gdowski A, Ranjan AP, Mukerjee A, Vishwanatha JK. Nanobiosensors: role in cancer detection and diagnosis. Adv Exp Med Biol. 2014;807:33-58.
  23. Gruhl FJ, Rapp BE, Länge K. Biosensors for diagnostic applications. Adv Biochem Eng Biotechnol. 2013;133:115-48.
  24. Kaur H, Bhosale A, Shrivastav S. Biosensors: Classification, Fundamental Characterization and New Trends: A Review. 2018:315.
  25. Polat EO, Cetin MM, Tabak AF, Bilget Güven E, Uysal BÖ, Arsan T, et al. Transducer Technologies for Biosensors and Their Wearable Applications. Biosensors [Internet]. 2022; 12(6)
  26. Naresh V, Lee N. A Review on Biosensors and Recent Development of Nanostructured MaterialsEnabled Biosensors. Sensors [Internet]. 2021; 21(4).
  27. Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors [Internet]. 2008; 8(3):[1400-58 pp.].
  28. Sadani K, Nag P, Thian XY, Mukherji S. Enzymatic optical biosensors for healthcare applications. Biosensors and Bioelectronics: X. 2022;12:100278.
  29. Lee W, Thompson H. Detection of Newcastle disease virus using an evanescent wave immunobased biosensor. Canadian Journal of Chemistry. 2011;74:707-12.
  30. Kaya SI, Karadurmus L, Ozcelikay G, Bakirhan NK, Ozkan SA. Electrochemical virus detections with nanobiosensors. Nanosensors for Smart Cities. 2020:303-26.
  31. Kabay G, DeCastro J, Altay A, Smith K, Lu HW, Capossela AM, et al. Emerging Biosensing Technologies for the Diagnostics of Viral Infectious Diseases. Adv Mater. 2022;34(30):e2201085.
  32. Zaytseva NV, Goral VN, Montagna RA, Baeumner AJ. Development of a microfluidic biosensor module for pathogen detection. Lab on a Chip. 2005;5(8):805-11.
  33. Vo-Dinh T. Nanosensing at the single cell level. Spectrochim Acta Part B At Spectrosc. 2008;63(2):95-103.
  34. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MdP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology. 2018;16(1):71.
  35. Park DH, Choi MY, Choi JH. Recent Development in Plasmonic Nanobiosensors for Viral DNA/RNA Biomarkers. Biosensors (Basel). 2022;12(12).
  36. Combes GF, Vučković AM, Perić Bakulić M, Antoine R, Bonačić-Koutecky V, Trajković K. Nanotechnology in Tumor Biomarker Detection: The Potential of Liganded Nanoclusters as Nonlinear Optical Contrast Agents for Molecular Diagnostics of Cancer. Cancers (Basel). 2021;13(16).
  37. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry. 2019;12(7):908-31.
  38. Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol. 2009;4(10):669-73.
  39. Guinart A, Perry HL, Wilton-Ely J, Tetley TD. Gold nanomaterials in the management of lung cancer. Emerg Top Life Sci. 2020;4(6):627-43.
  40. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56-8.
  41. Yoo B, Xu Z, Ding F. How Single-Walled Carbon Nanotubes are Transformed into Multiwalled Carbon Nanotubes during Heat Treatment. ACS Omega. 2021;6(5):4074-9.
  42. Singh R, Deshmukh R. Carbon nanotube as an emerging theranostic tool for oncology. Journal of Drug Delivery Science and Technology. 2022;74:103586.
  43. Pandey RR, Chusuei CC. Carbon Nanotubes, Graphene, and Carbon Dots as Electrochemical Biosensing Composites. Molecules. 2021;26(21)
  44. Sanmartín-Matalobos J, Bermejo-Barrera P, Aboal-Somoza M, Fondo M, García-Deibe AM, Corredoira-Vázquez J, et al. Semiconductor Quantum Dots as Target Analytes: Properties, Surface Chemistry and Detection. Nanomaterials [Internet]. 2022; 12(14).
  45. Sanmartín-Matalobos J, Bermejo-Barrera P, Aboal-Somoza M, Fondo M, García-Deibe AM, Corredoira-Vázquez J, et al. Semiconductor Quantum Dots as Target Analytes: Properties, Surface Chemistry and Detection. Nanomaterials (Basel). 2022;12(14).
  46. Mallick T, Karmakar A, Sultana Z. Quantum Dots: Potential Cell Imaging Agent. 2022. p. 191-207.
  47. Qureshi A, Tufani A, Corapcioglu G, Niazi JH. CdSe/CdS/ZnS nanocrystals decorated with Fe3O4 nanoparticles for point-of-care optomagnetic detection of cancer biomarker in serum. Sensors and Actuators B: Chemical. 2020;321:128431.
  48. Jie G, Wang L, Zhang S. Magnetic electrochemiluminescent Fe3O4/CdSe-CdS nanoparticle/polyelectrolyte nanocomposite for highly efficient immunosensing of a cancer biomarker. Chemistry. 2011;17(2):641-8.
  49. Priyadarsini S, Mohanty S, Mukherjee S, Basu S, Mishra M. Graphene and graphene oxide as nanomaterials for medicine and biology application. Journal of Nanostructure in Chemistry. 2018;8(2):123-37.
  50. Bollella P, Fusco G, Tortolini C, Sanzò G, Favero G, Gorton L, et al. Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection. Biosens Bioelectron. 2017;89(Pt 1):152-66.
  51. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, et al. Improved synthesis of graphene oxide. ACS Nano. 2010;4(8):4806-14.
  52. Kumar S, Himanshi, Prakash J, Verma A, Suman, Jasrotia R, et al. A Review on Properties and Environmental Applications of Graphene and Its Derivative-Based Composites. Catalysts [Internet]. 2023; 13(1).
  53. Hoseini-Ghahfarokhi M, Mirkiani S, Mozaffari N, Abdolahi Sadatlu MA, Ghasemi A, Abbaspour S, et al. Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is the World Still Flat? Int J Nanomedicine. 2020;15:9469-96.
  54. Wang H, Zhang Q, Chu X, Chen T, Ge J, Yu R. Graphene oxide-peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells. Angew Chem Int Ed Engl. 2011;50(31):7065-9.
  55. He S, Song B, Li D, Zhu C, Qi W, Wen Y, et al. A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis. Advanced Functional Materials. 2010;20(3):453-9.
  56. Ning Y, Hu J, Lu F. Aptamers used for biosensors and targeted therapy. Biomedicine & Pharmacotherapy. 2020;132:110902.
  57. Stanciu LA, Wei Q, Barui AK, Mohammad N. Recent Advances in Aptamer-Based Biosensors for Global Health Applications. Annual Review of Biomedical Engineering. 2021;23(1):433-59