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 ABSTRACT 
 

Neurodevelopmental disorders (NDDs), including autism spectrum disorder 

(ASD), attention-deficit/hyperactivity disorder (ADHD), intellectual disability 

(ID), and rare genetic syndromes, affect millions of children worldwide and 

impose a significant global health burden. Current diagnosis relies primarily 

on behavioral assessments, which are subjective, delayed, and poorly suited to 

capture comorbidities. Biological testing remains limited, leading to 

diagnostic delays of years in ASD, ADHD, and rare syndromes. Advances in 

multi-omics like genomics, transcriptomics, proteomics, metabolomics, and 

epigenomics, together with artificial intelligence (AI) provide a transformative 

path toward precision medicine in NDDs. Genomic studies highlight the role 

of copy number variants and polygenic risk scores in risk stratification, while 

transcriptomic and proteomic analyses reveal synaptic and 

neuroinflammatory pathways relevant to pathogenesis. Metabolomic 

profiling of biofluids identifies mitochondrial and microbiome-linked 

biomarkers, and epigenomics offers an environment-responsive regulatory 

layer. AI enables integration of these high-dimensional datasets, overcoming 

the “curse of dimensionality” through deep embedding, graph learning, and 

multimodal fusion. Case studies demonstrate promising accuracies in early 

prediction of ASD and ADHD from placental transcriptomics, DNA methylation, 

and newborn metabolomics, with reported AUCs approaching 1.00. Beyond 

diagnosis, AI-driven multi-omics supports stratified interventions, from 

metabolic modulation to pathway-specific pharmacology and 

neuromodulation, while adaptive monitoring systems linking omics to 

electronic health records and wearable biosensors enable continuous, 

individualized care. However, small cohorts, limited replication, high costs, and 

ethical issues around privacy, equity, and algorithmic bias remain critical 

barriers. Future progress is contingent on the independent validation of 

existing models, a shift toward explainable AI (XAI) to elucidate biological 

mechanisms, and the adoption of privacy-preserving federated learning 

platforms to enhance data diversity and model robustness. Future directions 

demand longitudinal biobanking, federated learning, XAI frameworks, and 

cross-disciplinary collaboration to ensure robust translation. Integrating AI 

with multi-omics holds unprecedented potential to reshape 

neurodevelopmental care from diagnosis to lifelong management. 
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Introduction 

 

Neurodevelopmental disorders (NDDs), notably 

autism spectrum disorder (ASD), attention-

deficit/hyperactivity disorder (ADHD), intellectual 

disability (ID) and rare genetic syndromes affect a 

substantial portion of children worldwide. Recent 

estimates place ASD at roughly 0.4 % globally with 

higher rates in high-income countries (up to 0.7 

%) .1 In the United States, about 1 in 31 eight-year-

olds (3.2 %) have ASD .2 ADHD shows even greater 

reach: global childhood prevalence is around 6–8 

%,3 while recent U.S. estimates report that 11.4 % 

of children age 3–17 have ever been diagnosed. 4 

Intellectual disability affects roughly 2–3 % of the 

general population. 3 Co-occurrence is common: 

ADHD traits appear in 25 %–32 % of individuals 

with autism and ID co-exists in 30 %–40 % .3  

Diagnosis remains challenging. Clinical 

assessments rely heavily on behavioral 

observation, which varies by context, age and 

evaluator expertise. Biological tests are absent. 

These constraints delay personalized care and 

hinder early intervention. Against this backdrop, 

next-generation AI integrated with multi-omics 

data while including genomics, transcriptomics, 

proteomics, metabolomics and epigenomics 

offers a new frontier. This convergence promises 

improved early diagnosis, precise subtyping of 

disorders and tailored long-term management. AI-

driven multi-omics integration holds 

transformative potential for early diagnosis, 

precision medicine and long-term care in 

neurodevelopmental health. 

 

Figure 1: AI + Multi-Omics Framework for NDD 

Landscape of Neurodevelopmental Disorders 

Neurodevelopmental disorders impose a 

substantial global strain. In 2021, among children 

aged 0–14, autism spectrum disorder (ASD) 

affected roughly 857 per 100,000 individuals (0.86 

%) and ADHD about 1,662 per 100,000 (1.66 %) 

figures derived from the Global Burden of Disease 

(GBD) study while corresponding burdens in 

disability-adjusted life years (DALYs) reached over 

3.3 million for ASD and around 410,000 for ADHD 

in that group.5 Broadly, the global prevalence of 

ASD stood at over 61 million individuals in 2021 

approximately one in 127 people with an age-

standardized rate of 788 per 100,000 and 11.5 

million DALYs.6  

ASD accounted for a leading cause of non-fatal 

health burden among those under 20 with DALY 

rates particularly high in high-income regions, up 

to 204 per 100,000. 7 ADHD prevalence across the 

lifespan in 2019 ranged between 0.83 % and 1.49 

%, contributing about 0.8 % of global mental 

disorder DALYs.8 Regionally, prevalence of ASD 

varies notably from just 0.02 % in China to over 3 

% in Sweden while showing methodological and 

diagnostic differences.9  

Current diagnosis depends on clinical observation, 

standardized behavioral assessments and in select 

cases genetic screening for rare syndromes. Yet 

these approaches introduce subjectivity, long 

delays and inconsistent results. For example, the 

average age at ASD diagnosis is approximately five 

years (around 60 months), often following years 

of concern. 10 In Scotland, patients may endure 

over four years for diagnostic confirmation.11 In 

England, nearly 2.5 million individuals likely have 

ADHD, yet only a third hold formal diagnoses and 

waiting lists exceed half a million people.12  

Further delays occur when conditions overlap. 

Children with both ADHD and autism may receive 

ASD diagnoses 1.5 to 2.6 years later than peers 

without ADHD.13 People with rare genetic 

disorders bearing neuropsychiatric symptoms 

face mean diagnostic delays of over nine years, 

even as testing methods improved over decades.14 

These gaps late diagnosis, heterogeneous 

presentations, comorbidity and limited access 
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block early intervention, derail personalized care 

and stall therapeutic progress. The shortcomings 

reveal urgent need for precision in 

neurodevelopmental disorders diagnosis, early 

detection autism ADHD and recognition of 

limitations of current care. 

Multi-Omics Approaches in Neurodevelopment 

Genomics 

Rare mutations such as copy number variants 

(CNVs) and polygenic risk scores (PRS) both 

contribute to neurodevelopmental disorders. In 

families affected by autism or ADHD, rare CNVs 

and PRS together explain roughly 10 % of variance 

in comorbid conditions, while PRS alone accounts 

for as little as 2 % in ADHD and 4 % in autism. 15 

Recent methods like GenomicSEM help 

disentangle overlapping genetic risk between 

ADHD and ASD, improving PRS specificity and 

discriminatory power for diagnostic use. 16 

However, PRS remains limited: its predictive 

accuracy is modest and in one cohort the highest 

ADHD-PRS decile conferred just a 4.4-fold 

increased relative risk. 17  

Transcriptomics 

Altered gene expression in neural pathways is 

increasingly recognized in NDDs. Transcriptomic 

profiling often combined with neuroimaging has 

revealed ASD-related gene network modules that 

align with brain regions relevant to functional 

abnormalities, reinforcing the potential of 

imaging-transcriptomics for early biomarker 

discovery. 18  

Proteomics 

Proteomic studies of synaptic structures in ASD 

uncover reduced expression of postsynaptic 

proteins including AMPA and NMDA receptor 

components (e.g., DLG4, Shank1-3), CAMK2α, 

neuroligins and neurexins implicating disrupted 

synaptic maturation in cognitive deficits 19 Broader 

proteomic–metabolomic analyses find 

dysregulation in mitochondrial bioenergetics 

(e.g., NDUV1), immune/inflammatory proteins 

(e.g., MBP), lipid metabolism (e.g., APOB-100) and 

synaptic function markers (e.g., SYT1) in ASD 

patients. 20  

Metabolomics 

Biofluid metabolomic profiling reveals altered 

metabolites in ASD linked to fatty-acid metabolism 

(decanoyl-L-carnitine), oxidative stress 

(glutathione), mitochondrial dysfunction 

(arginine), energy metabolism (succinic acid), 

neurotransmitters (GABA) and microbiome 

interplay (tryptophan). 20 Integrated urine-based 

proteomic and metabolomic studies further 

identify neuroinflammation-related changes: 77 

differential proteins and 277 metabolites with 

pathways such as leukocyte migration, antigen 

presentation and immune signaling enriched in 

ASD samples. 21 

Epigenomics 

While neurodevelopmental epigenomic data 

remain sparse, integrating epigenomic data such 

as DNA methylation offers critical insight. It 

captures environment-responsive gene regulation 

layers and is a cornerstone of systems medicine 

approaches.22 

Advantages of Omics Integration 

Combining these omics yields a systems-medicine 

view. Multi-omics integration supported by 

network biology, deep learning, Bayesian 

networks, graph-based models, tools like 

mixOmics and joint pathway analyses facilitates 

detection of regulatory hierarchies and multi-

modal biomarkers that single-omics cannot 

(Placeholder1)provide. 23 This strategy enhances 

diagnostic accuracy, clarifies mechanistic 

pathways and may guide therapeutic targeting. 

Genomics in autism, proteomics biomarkers ADHD 

and multi-omics integration neuroscience are 

advancing beyond descriptive data to actionable 

biology but only by embracing interconnected 

omics layers can we start to capture the full 

complexity of neurodevelopmental disorders. 

Next-Generation AI and Data Integration 

Artificial intelligence methods spanning classic 

machine learning, deep learning and graph neural 

networks are advancing the capacity to harness 

complex multi-omics in neurodevelopment. The 

burden of high-dimensional omics data, marked by 

thousands of features from small sample sets, 

poses a serious big-data challenge known as the 
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“curse of dimensionality.” Techniques like deep 

embedding (as in frameworks such as OmiEmbed) 

reduce dimensionality and improve downstream 

task performance, from phenotype profiling to 

multi-omics integration or survival prediction.24  

AI enables fusion across omics layers. A prime 

example comes from a large birth cohort study 

integrating placental transcriptomics and 

metabolomics to explore the placenta-brain axis. 

Using a multi-omics machine learning workflow, 

researchers achieved remarkably accurate 

classification of neurodevelopmental symptoms: 

99.7 % for autism, 99.0 % for ADHD and 95.7 % for 

intellectual disability. 25 Such results illustrate 

potential of AI multi-omics integration to identify 

early biomarkers from biological fluid data, 

forging a route toward molecular diagnosis. In 

genomics and epigenomics, several studies show 

promise. One used deep learning models on 

placental CpG methylation data to predict autism 

in newborns with perfect accuracy (AUC = 1.00), 

implicating neuronal development pathways such 

as synapse formation and neurogenesis. 26 

Another study applied explainable AI to gene-

expression datasets from GEO, identifying 

hundreds of differentially expressed genes and 

potential ASD biomarkers such as HOXB3, SEMA4D 

and MID2. 27 However, a critical future need is to 

move beyond predictive accuracy alone. Research 

must prioritize explainable AI (XAI) approaches 

that demystify model decisions, linking 

predictions to specific, interpretable biological 

mechanisms. These examples reflect value of XAI 

and deep learning neurodevelopment strategies 

that combine disparate omics layers. 

Developments in graph-based AI also offer 

promise. One multi-modal, multi-kernel graph-

learning framework (MMKGL) encoded modalities 

such as imaging into learned graph embeddings. 

Applied to autism prediction, this method 

outperformed conventional models and 

spotlighted specific brain regions tied to 

pathology. 28 Most case studies currently focus on 

autism; direct examples for ADHD using proteomic 

or metabolomic data remain scarce. Yet machine 

learning classifiers have shown value for instance, 

peripheral blood mRNA models in toddlers 

achieved AUC of 0.88 using selected immune-

related genes.29 AI methods from machine 

learning through deep learning to graph neural 

networks offer powerful tools to manage the 

complexity of multi-omics data and fuse layers. 

Case studies demonstrate potential for early 

autism risk prediction via combined 

genomic/epigenomic markers and symptom 

classification using transcriptomic/metabolomic 

placental data. This emerging work signals a shift 

toward precision psychiatry, but it must be 

tempered small cohorts, lack of replication and 

overfitting risk demand continued rigor and 

independent validation. 

Applications in Early Diagnosis 

Early detection stands as a pivotal aim in 

neurodevelopmental care. AI-enabled models that 

fuse omics, imaging and behavioral inputs are 

reshaping the field of AI early diagnosis autism. 

One study applied deep learning to placental DNA 

methylation patterns. Using just five CpG sites, it 

predicted autism with perfect accuracy (AUC = 

1.00, 100 % sensitivity and specificity).30 Similarly, 

analysis of newborn leukocyte methylation 

achieved AUC = 1.00 with sensitivity at 97.5 % and 

specificity at 100 %, leveraging six CpG-based 

markers .30 In newborn screening settings, 

integrating multi-omics newborn screening shows 

promise. Untargeted metabolomic profiling of 

dried blood spots identified biochemical markers 

in neonates who later developed autism, laying 

groundwork for molecular surveillance at birth .31 

Broader philosophical reviews affirm the potential 

to expand newborn screening programs through 

omics integration, though challenges remain in 

implementation cost, acceptability and 

scalability.32 Real-world medical records also feed 

AI-based risk assessments. A machine learning 

model trained on electronic health records from 

over 780,000 children achieved an AUC of 0.86 in 

predicting ASD using early life data birth metrics, 

developmental milestones and familial variables. 

High-risk groups showed a 4.3-fold higher ASD 

incidence. 33 Another approach applied EHR-based 

Cox models to data collected before age one. By 

360 days, the sensitivity reached nearly 60 % at 81 

% specificity and performance improved when 

paired with caregiver surveys.34 
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Imaging and behavioral fusion also advance early 

detection. A digital phenotyping app using 

behavioral stimuli, computer vision and machine 

learning achieved AUC = 0.90 with 88 % sensitivity 

and 81 % specificity in identifying autism among 

toddlers.35 Reviewer interpretations of AI-powered 

neuroimaging, including fMRI, EEG, and DTI, report 

accuracies ranging from 85 % to 99 % and 

highlight developmental windows (9–12 months) 

as critical for early biomarker extraction.36 Case 

identification of specific syndromes such as 

Fragile X or Rett through AI-omics remains 

limited. Yet, early genetic or epigenetic biomarker 

detection in newborns suggests potential 

pathways for early identification of such 

conditions, especially with targeted omics panels 

integrated into newborn screening. Predictive 

models neurodevelopment that combines omics, 

clinical records and imaging hold remarkable 

promise for identifying autism risk before 

symptoms emerge. These approaches could 

extend into newborn screening frameworks. Still, 

limitations overfitting, cohort bias, scalability and 

the need for external validation across diverse 

populations must be addressed to ensure clinical 

translation. 

Precision Medicine and Tailored Interventions 

Precision medicine offers a path to overcome the 

limitations of one-size-fits-all care in 

neurodevelopmental disorders by stratifying 

patients on the basis of omics-derived biomarkers. 

Genomic and epigenomic profiles have begun to 

distinguish subgroups of autism spectrum 

disorder (ASD) and attention-deficit/hyperactivity 

disorder (ADHD) with distinct biological 

underpinnings. For instance, polygenic risk scores 

and methylation signatures linked to synaptic 

plasticity or dopaminergic signaling have been 

proposed as stratification tools, enabling 

clinicians to move beyond symptom-based 

categorization. This approach aligns with the 

growing demand for personalized treatment in 

multi-omics neurodevelopment research.37  

Tailored interventions are advancing across 

multiple domains. Nutritional strategies informed 

by metabolomic data, such as correction of amino 

acid imbalances or modulation of gut-brain 

metabolites, are being investigated as adjunctive 

therapies in ASD. Pharmacological precision is 

emerging through identification of pathway-

specific drug targets; for example, inhibitors of 

mTOR signaling in Fragile X syndrome or 

modulators of glutamatergic transmission in Rett 

syndrome. Neuromodulation approaches, 

including transcranial magnetic stimulation and 

closed-loop neurofeedback, may be personalized 

through biomarkers indicating cortical excitability 

profiles. Such interventions hold promise for 

reshaping developmental trajectories rather than 

simply alleviating symptoms.38 Artificial 

intelligence has accelerated these developments 

by refining AI drug discovery in 

neurodevelopment. Deep learning platforms 

trained on proteomic and metabolomic data are 

capable of identifying candidate molecules that 

target synaptic function or metabolic 

dysregulation. Virtual screening combined with 

molecular dynamics further narrows therapeutic 

candidates, shortening the drug discovery 

pipeline. AI-driven trial design enables biomarker-

guided stratification, improving power to detect 

treatment effects in heterogeneous populations 

while reducing attrition rates.39 

Despite these advances, challenges remain. Most 

biomarkers lack replication across large cohorts 

and ethical considerations arise around 

stratification in pediatric populations. Clinical 

implementation is hindered by the high cost of 

multi-omics sequencing and the limited 

accessibility of computational infrastructure in 

routine care. Nonetheless, precision medicine in 

ASD and ADHD is progressing toward a systems-

level framework in which omics signatures guide 

individualized therapies. The integration of AI and 

network biology provides a feasible path to 

overcome current diagnostic and therapeutic 

bottlenecks, moving neurodevelopmental care 

toward targeted, evidence-based 

personalization.40  

AI in Long-Term Care and Monitoring 

Long-term management of neurodevelopmental 

disorders such as autism spectrum disorder (ASD) 

and attention-deficit/hyperactivity disorder 

(ADHD) requires sustained, individualized 
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monitoring that extends well beyond initial 

diagnosis. The integration of multi-omics data 

with wearable biosensors, electronic health 

records (EHRs) and digital phenotyping provides 

an unprecedented opportunity to build dynamic 

care models. Wearable devices can capture 

continuous physiological data such as heart rate 

variability, sleep architecture and movement 

patterns, while digital platforms monitor social 

interactions, speech and attention through 

passive sensing. When combined with genomic 

and metabolomic information, these data streams 

create a multidimensional profile of patient 

trajectories.41 

Artificial intelligence systems are increasingly 

being deployed to analyze these high-dimensional 

datasets, allowing for AI neurodevelopment care 

monitoring that surpasses traditional clinical 

follow-up. Machine learning models can identify 

subtle deviations in developmental progress, 

predicting therapy response or risk of regression 

months before such changes become clinically 

observable. Importantly, AI tools enable outcome 

quantification across diverse treatment 

modalities, from pharmacological interventions to 

behavioral therapies, thereby addressing the long-

standing challenge of objectively measuring 

effectiveness in heterogeneous populations.42 

One of the most promising applications is the 

development of adaptive interventions. AI 

platforms can update individualized care plans in 

real time, recommending therapy intensification, 

nutritional modification or neuromodulation 

adjustments based on continuously collected 

data. Such adaptivity is crucial in pediatric 

populations where developmental trajectories are 

highly dynamic. Integration of omics-informed 

risk stratification into EHR-linked monitoring 

systems may help prioritize high-need patients 

and optimize resource allocation.43 Nevertheless, 

implementation barriers persist. Data 

interoperability across platforms remains limited, 

privacy concerns are magnified in pediatric care 

and disparities in access to digital health 

infrastructure risk widening inequities. Despite 

these obstacles, the convergence of digital health 

autism management, long-term ADHD AI 

monitoring and multi-omics integration positions 

AI as a transformative tool in sustaining 

individualized neurodevelopmental care 

throughout the lifespan.40 

Ethical, Legal and Social Implications 

The application of AI and multi-omics in 

neurodevelopmental disorders raises profound 

ethical, legal and social questions. Central among 

these is data privacy and security. Multi-omics 

datasets, when integrated with electronic health 

records, imaging and digital phenotyping, create 

highly identifiable patient profiles. Breaches of 

such information could expose not only medical 

vulnerabilities but also sensitive behavioral traits, 

making multi-omics privacy in neurodevelopment 

a critical safeguard for familiesEncryption, the use 

of federated learning platforms to enable analysis 

without centralizing sensitive data, and 

differential privacy are being explored, yet their 

effectiveness in pediatric research and long-term 

monitoring is still uncertain.44 Equity in access 

and algorithmic bias present additional concerns. 

AI models trained on predominantly Western, 

high-income population datasets may fail to 

generalize across diverse genetic and social 

groups, perpetuating disparities in autism or 

ADHD diagnosis. Without deliberate inclusion of 

underrepresented populations, predictive models 

risk reinforcing structural inequities in 

healthcare.45 Strategies to mitigate this, such as 

the secure integration of globally diverse datasets 

via federated learning, are essential to ensure 

model robustness and fairness..45 

From a family and societal perspective, predictive 

diagnostics carry psychosocial implications. Early 

identification of autism spectrum disorder or 

fragile X variants may empower parents to seek 

intervention, but it also raises anxiety, stigma and 

potential misuse of information by insurers or 

educational institutions. The ethical challenges of 

AI autism diagnosis extend beyond accuracy, 

demanding attention to how families interpret 

and act on probabilistic risk information.46 

Regulatory frameworks have struggled to keep 

pace. While agencies such as the FDA and EMA are 

developing pathways for adaptive AI in healthcare, 

there is no consensus on standards for pediatric 

applications where predictive tools intersect with 
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long-term care. Policymakers must balance 

innovation with oversight, ensuring transparency, 

explainability and accountability in algorithmic 

decisions. Addressing AI ethics in healthcare 

requires multi-stakeholder collaboration, 

integrating technical safeguards with social 

dialogue. Without such measures, the promise of 

AI-driven neurodevelopmental care risks being 

undermined by ethical fragility.47 

 

 

 

 

 

 

 

 

 

 

Figure 2: Clinical Translation Pathway 

Future Directions and Research Gaps 

Despite rapid progress, significant challenges 

remain before AI-driven multi-omics integration 

can be fully realized in neurodevelopmental 

disorders (NDDs). A pressing technical frontier lies 

in the implementation of federated learning and 

decentralized AI, which allow multi-center data 

sharing without compromising privacy. The 

explicit adoption of such platforms is crucial to 

securely combine data across institutions, 

mitigating statistical bias and ensuring model 

robustness across global populations. Current 

research in NDDs is limited by fragmented 

datasets, often confined to single institutions or 

narrowly defined cohorts. Federated models could 

enable large-scale training across international 

sites, mitigating bias and enhancing 

generalizability while maintaining strict data 

governance.25 

Another gap is the scarcity of longitudinal multi-

omics datasets. Most existing studies are cross-

sectional, capturing only a static snapshot of 

genetic, transcriptomic or metabolic profiles. 

Neurodevelopment, however, unfolds dynamically 

across childhood and adolescence. Without time-

series data, it is difficult to model trajectories of 

risk, resilience and therapeutic response. There is 

a critical need for the establishment of 

longitudinal biobanks to track omics profiles over 

time. Establishing long-term, population-based 

biobanks will be essential for predictive accuracy 

and for the independent validation of predictive 

models.48 Future progress also hinges on cross-

disciplinary collaboration. Neuroscientists, 

bioinformaticians and clinicians must work 

alongside ethicists and data scientists to bridge 

technical discoveries with clinical translation. 

Current pipelines too often stall at proof-of-

concept failing to deliver tools that can be 

deployed in pediatric clinics or community 

settings. Translating laboratory findings into 

actionable interventions remains a central 

bottleneck.49 Finally, a forward-looking agenda 

requires attention to scalability, regulatory 

harmonization and equitable access.  A key 

priority must be a paradigm shift in AI 

development from a sole focus on predictive 

accuracy to a mandatory demonstration of 

explainability (XAI), elucidating the biological why 

behind predictions. Without deliberate strategies, 

the future of AI in neurodevelopment risks 

advancing innovation for a select few, rather than 

addressing global needs. By identifying multi-

omics research gaps and fostering AI 

neuroscience innovation, the field can move from 

theoretical promise to transformative clinical 

reality.50 

Conclusion 

The integration of AI and multi-omics is reshaping 

the landscape of neurodevelopmental disorders 

(NDDs) and it is offering unprecedented 

opportunities for earlier diagnosis, more precise 

stratification and continuous care across the 

lifespan. Genomic, transcriptomic, proteomic, 
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metabolomic and epigenomic insights when 

linked with behavioral and digital health data, 

provide a systems-level view that surpasses 

conventional diagnostic approaches. AI methods 

capable of handling such complexity are driving a 

shift toward multi-omics personalized medicine 

where interventions can be tailored to the unique 

biological and developmental profiles of each 

patient. 

The promise extends beyond detection to lifelong 

AI neurodevelopment care. Adaptive monitoring 

platforms, integrating omics with wearable 

sensors and electronic health records, allow 

dynamic adjustments in therapy while creating 

feedback-driven care models that evolve alongside 

the individual. Such innovations, however, demand 

rigorous independent validation, equitable 

deployment and strong ethical governance to 

prevent bias, safeguard privacy and ensure 

societal trust. The field now faces a decisive 

juncture: without cross-disciplinary collaboration 

and clinical translation, progress risks remaining 

confined to academic silos. The path forward 

requires a commitment to explainable AI (XAI), 

federated learning for diverse data integration, 

and longitudinal biobanking to validate models 

over time. Future of AI in healthcare lies not only 

in technical capability but in the willingness to 

integrate neuroscience, bioinformatics, clinical 

medicine and regulatory oversight. With these 

foundations, AI-driven multi-omics can move from 

conceptual potential to transformative practice in 

neurodevelopmental care. 
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