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Abstract

Abstract - The optimal power flow for networked microgrids with different renewable energy sources (PV
panels and wind turbines), storage systems, generators, and load is investigated in this study. A conventional
method and an Acrtificial Intelligence method are applied to solve the OPF problem. The performance of MGs
system with renewable energy integration was investigated in this study, with a focus on power flow studies.
The power flow is calculated using the well-known Newton-Raphson method and the Neural Network method.
The power flow calculation is used to assess grid performance parameters like voltage bus magnitude, angle,
and real and reactive power flow in system transmission lines. under given load conditions. The standard test
system used was a benchmark test system for Networked MGs with four MGs and 40 buses. The data for the
entire system has been chosen as per the IEEE Standard 1547-2018. The results showed minimum losses and
higher efficiency when performing OPF using NN than the Newton-Raphson method. The efficiency of the
power system for the networked MG is 99.3% using Neural Network and 97% using the Newton- Raphson
method. The Neural Network method, which mimics how the human brain works based on Al technologies,
gave the best results and better efficiency in both cases (Battery as Load/Battery as Source) than the
conventional method.
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1. Introduction

The electric energy network is a complex and in-
terconnected system commonly known as the grid.
Growing electricity demand requires more sustain-
able and renewable energy sources. Nowadays, a
massive transformation of the current electric energy
system is observed. For instance, the energy flow
becomes bidirectional due to the Distributed Gener-
ations (DG) plants where the energy is transferred
between several nodes of the power grid/Microgrid,
according to the changing demands [1].

A microgrid is a more intelligent and efficient
mini-version of the electric grid. The electric grid is
made up of interconnected sub-systems, namely gen-
eration, transmission, and distribution. On the other
hand, the microgrid is a decentralized group of elec-
tricity sources and loads that are synchronized with
the electrical grid but can be disconnected and oper-
ate autonomously in “Island Mode.” It can serve a
small localized area to keep the power flowingwhen
the electrical grid is down, protect the microgrid
from power outages by relying only on their own,
serve the larger grid, and provide clean and green
energy since they are fueled mainly by renewable en-
ergy sources (RES) [2].

Such a new scenario requires new systems that
can allow the power grid to be smart by managing
the bi-directional energy flow. Figure 1.1 shows the
current plan where different distributed generation
plants supply the energy to customers and the sur-
plus power is injected back to the grid [1]. In ad-
dition, the improvements in storage technologies al-
low more flexible operation and reliable management
of energy. Therefore, RES associated with storage
units is considered as actively distributed generators,
which is one of the essential elements of the “Smart
Grid” concept [3].

Bulk power generators are complicatedly con-
nected to the transmission system, whereas the sim-
ple design of distribution networks allow many cus-
tomers to easily connect to them and be the pro-
sumers. The Generating Companies (GenCos) seek
to maximize the utilization of the existing generation
resources by using the appropriate load distribution.
However, the Transmission Companies (TransCo)
tend to keep standard operating conditions in terms

of low transmission line congestion, high value of
minimum bus voltage, and low level of transmission
loss [4]. Loss reduction can be achieved through the
appropriate control of Distributed Generation (DG)
resources in the distribution systems, or more gen-
erally, through the management of dispatchable re-
sources (DG, load, storage), which can be effectively
assessed using Optimal Power Flow problem.

1.1. Objective and Methodology

The employment of the OPF in smart grids is re-
garded as a new development in power system stud-
ies. Therefore, this work aims to study the optimal
power flow problem in microgrid by determining the
best way to optimize the flow of power using the
Newton-Raphson approach and the Neural-Network
approach. The optimization of the power flow using
the Newton Raphson method and Neural-Network
method will be performed using simulation. In ad-
dition, the impacts of the distributed generations, re-
newable energy sources, storage systems, and EV
Charging stations are investigated.

1.2. Work Organization

Section |1 gives an overview of previous publica-
tions covering OPF. Section 111 gives an overview of
the Optimal Power Flow. Section IV highlights the
study of OPF using Newton-Raphson method. In
Section V, the OPF Study using the Neural-Network
is analyzed. Discussions and conclusions are drawn
in Section VI and VI respectively.

I
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<

Fig - 1.1 Current Scenario of the power grid.
2. Literature Review

Lin and shen [5] showed that utilizing renew- able
energy sources to reduce carbon emission and
minimizing the fuel cost for energy saving in the
OPF problem will reduce the global warming effect
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from the power generation sector. In this paper, a
DPOPF (distributed and parallel OPF) algorithm for
the smart grid transmission system with renewable
energy sources was proposed to account for the fast
variation of the power generated by renewable en-
ergy sources. The proposed DPOPF algorithm com-
bines the recursive quadratic programming method,
and the Lagrange projected gradient method. The
proposed algorithm can achieve the complete decom-
position and be implemented in the smart grid trans-
mission system to make distributed and parallel com-
putation possible. results confirm that the comput-
ing speed of the proposed DPOPF algorithm is fast
enough to cope with the fast variations of the power
generated by renewable energy sources. A PSO (Par-
ticle Swarm Optimization) was presented in [6] to
find the most optimal locations and sizes of DGs,
with the objective function to minimize the system’s
total cost, real power loss, and the number of the in-
stalled DGs. Firstly, a radial distribution power flow
(PF) algorithm is executed to find the global opti-
mal solution. Then, with respect to voltage profile,
THD and loss reduction and by using the sensitiv-
ity analysis, PSO is used to calculate the objective
function and to verify bus voltage limits. To include
the presence of harmonics, PSO was integrated with
a harmonic power flow algorithm (HPF). The pro-
posed (PSO-HPF) based approach was tested on an
IEEE 15-bus radial distribution system. According
to the authors, these scenarios yield efficiency in im-
provement of voltage profile and reduction of THD
and power losses; it also permits an increase in power
transfer capacity and maximum loading. According
to Pazheri et al. [7], an economic/environmental dis-
patching (EED) problem formulation was presented
for a hybrid system that comprises thermal units, the
solar, wind, and storage unit. The study was sim
ulated using MATLAB/Simulink. A consistent op-
timum EED was obtained by extracting maximum
renewable energy during their availability and using
them for both available and unavailable periodswith
the aid of their storages. In [8], Atwa et al. proposed
a probabilistic planning technique to allocate various
DG types (wind, solar, biomass) in the distribution
system with an Objective Function to minimize the
energy loss. The results reveal that regardless of the
combination of the renewable resources used to cal-
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culate the optimal fuel mix, there is a significant re-
duction in the annual energy loss. An optimal control
model of a heat pump water heater (HPWH) supplied
by a wind-generator-PV-grid system was presented
in [9] with an OF is to minimize the overall energy
cost. This problem was solved using a mixed inte-
ger linear program. The results show a 70.7% cost
reduction upon implementation of this intervention.
Sanseverino et al. [10] showed an execution moni-
toring and re-planning approach to solve theoptimal
generation dispatch problem in smart grids with OF
to minimize the carbon emissions, production costs
and improve the quality. The replanning module is
based on a heuristic multi-objective optimizer able
to efficiently incorporate constraints. The obtained
results were encouraging and suggest to incorporate
into the Microgrids software technology approaches
for managing uncertainties. A smart energy manage-
ment system (SEMS) was presented in [11] to
optimally organize the power production of DG
sources and energy storage systems and minimize the
micro- grid operational costs. The results show that the
fore- casting model is able to predict hourly power
gener- ation according to the weather forecasting
inputs.

Similarly, an optimal energy management system
of storage devices in grid-connected microgrids was
presented in [12], where the stored energy is con-
trolled to balance the loads and renewable sources
and minimize the total cost of energy at the PCC
(Point of Common Coupling). Bracale et al. [13] pre-
sented an optimal control approach for a DC micro-
grid that included dispatchable (micro-turbine) and
non-dispatchable (PV generator) units, storage sys-
tem, and controllable/non-controllable loads. It was
designed to achieve a minimum daily total energy
cost and it shows that the power provided by the dis-
patchable unit and the storage system allowed the
minimization of the daily costs of energy. A novel
OPF algorithm for islanded microgrid was presented
in [14], where it provides minimum losses and a sta-
ble operating point with relevant droop parameters
used to regulate the primary voltage and frequency.
Shen et al. [15] presented an energy management
scheme containing battery storage, diesel generators,
PV, and wind. As a result, the proposed energy man-
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agement system is effective in engineering practice
and beneficial for both the microgrid and the cus-
tomers. Hassanzadehfard et al. [16] employed bat-
tery banks as long-term storage and ultra-capacitors
as short-term storage to control the frequency in a
microgrid. The simulation results showed that con-
sidering interruptible loads for the microgrid results
in cost reduction for the microgrid.

The development of EVs technology has a signifi-
cant impact on microgrid operations. Yu etal. in [17]
analyzed a model to find the effect of EV technol- ogy
on-demand response mobility. Numerical results
show that EVs mobility of symmetrical EV fleet is
able to achieve synchronous stability of network and
balance the power demand among different districts.
Moreover, Laureri et al. [18] presented an optimiza-
tion technique to integrate the EVs into the smart
grids. The results prove that the integration of elec-
tric vehicles in the smart grids can help in sustain- ing
the grid processes when parked and so playing in
costs minimization. Paterakis et al. [19] developed an
optimization technique to minimize the en- ergy
procurement costs of a smart household. Co-
ordination strategy was proposed in order to satisfy
the transformer capacity limits while promoting its
economically fair usage by the households. Lin et al.
[20] utilized an active power limitation strategy to
reduce PV power injection during peak solar irradia-
tion to avoid deviations in voltage. The results show
that the control for PV power rejection increases the
installation capacity of a PV system to make full use
of solar energy resources and to maximize the net
present value of a PV system investment. More- over,
a study was conducted in [21] to find the opti- mal
design of a PV/Battery hybrid system regarding PV
modules’ numbers, the PV module’s tilt, batter- ies
numbers, and capacities. Results show that the choice
of installation place and of the system type can
significantly affect the optimization results sig-
nificantly. In particular, the optimum PV module tilt
angle value changes according to electrical energy
demand of the domestic utility. In [22], an optimiza-
tion of the power flow of the PV system connected to
the grid was presented. It was performed by calculat-
ing the root of the active and reactive power equation
using Newton’s Raphson method. Simulation results
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have shown the maximum value of the active power
system at 1000 W/m2 irradiation was 408 W, as the
reactive power is needed only 11.82 Var. In [23], an
application for optimization of the energy flows in
smart power systems consisting of electric vehi- cles
(EV), distributed energy sources (DER), flexible
loads, and bidirectional storage is proposed, as well as
an optimization model for energy distribution be-
tween electric vehicles, electric storage devices, and
photovoltaic generators. A nonlinear optimization
problem with linear constraints for optimizing the
power flows in the system is defined and solved. A
multi-objective problem is determined to satisfy PV
production criteria and maximize the power flow to
the EVs. An algorithm for finding the optimal so-
lution to the multi-objective optimization problem is
also proposed. The approach is beneficial for energy
flow control and analysis of DER behavior. The algo-
rithm proposed for solving the multi-objective prob-
lem is applicable when storage and PV generation
units are used in the DER system.

Rigo-Mariani et al. [3] investigated different
procedures for the optimal power dispatching of a
grid- connected prosumer with energy storage
consisting of a high-speed flywheel. According to the
paper, optimal off-line scheduling for the day ahead
aims to minimize the cost with regard to the daily en-
ergy rates and consider the forecasts for both con-
sumption and production. That dispatching is per-
formed using global optimization procedures based on
a trust-region method or a niching genetic algo- rithm.
Another approach developed by the authors in [3] is
using step-by-step optimization and exploit- ing an
original self-adaptive dynamic programming strategy.
Kim and Lavrova [24] used an advanced op-
timization method to present optimal power flow and
energy-sharing among smart buildings. The authors
claimed that this method could improve the smart
grid’s optimal power flow and energy-sharing stabil-
ity among smart buildings and enhance energy dissi-
pation balance to reach stability among many smart
buildings in the smart grid.

Ke et al. [25] presented a new probabilistic OPF
(POPF) model with chance constraints that reflect the
uncertainties of wind power generation (WPG). The
results show the satisfactory accuracy of the PLF
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(Probabilistic Load Flow) method, and the effective-
ness of the proposed P-OPF model. In [26], a prob-
abilistic AC OPF (POPF) was presented, consider-
ing the load variation, stochastic wind behavior, and
variable line’s thermal rating. It was observed that a
reduction on the mean cost and also on the probabil-
ity of reaching higher generation costs was obtained
when dynamic limits where used. An optimization
system to calculate the optimal operation of a system
comprising electric vehicles and offshore wind farms
connected to the grid through an HVDC link was pre-
sented in [27]. It has been shown that the uncertainty
associated with availability of power from wind farm
and PEVs affects the overall cost of operation of sys-
tem. Lin and Lin [28] proposed a risk-limiting opti-
mal power flow (RLOPF) problem for systems with
high wind power penetration; the aim was to address
the issue of possibly violating the security constraints
in power systems due to the instability of wind power
generations.

3. Optimal Power Flow
3.1. OPF of Conventional Power Grid

Load flow, also known as a power flow, is a net-
work solution that displays currents, voltages, and
real and reactive power flows at each bus and lines
in the power system. The calculation of power flow
necessitates the solution of non-linear equations. It
can calculate the transmission system’s electrical re-
sponse to a specific set of loads and generator power
outputs. Carpentier presented Optimal Power Flow
in 1962 [4]. The OPF is typically a non-linear and
non-convex problem with Objective Function that
must be optimized (maximized or minimized), a set
of equality and inequality constraints that must be
satisfied, and a problem-solving method. Specif-
ically, OPF optimizes a

given Objective Function controlling power flow
throughout an electrical sys- tem without violating
power flow constraints or oper- ational limits [4]. In
other words, each power plant’s actual and reactive
power should be scheduled so that the total operating
cost is kept to a minimum. Thus, it can help grid
operators address various challenges in grid
planning, operation, and control. OPF can also be
used to determine prices on the day-ahead market

[29]. Some of the extended OPF versions are
illustrated below [4]:

¢ SCOPF: It selects the optimal control settings for
the base system to minimize the objective function
while ensuring that no violations occur.

e DC OPF: The reactive power and transmission
losses are not taken into account.

e AC OPF: It has to do with the AC grid and is
based on the system’s natural PF characteristics. As
a result, the outputs of this type of OPF are more
precise.

¢ Mixed AC/DC OPF: it is related to the OPF in
both AC and DC grids.

OPF has been solved using a variety of con-
ventional optimization methods such as Linear
Programming method, Non-linear Programming
method, Quadratic Programming method, Newton’s
method, and Interior Point method [30]. However, all
of these methods have their own set of benefits and
drawbacks which will be discussed further. OPF has
been solved using a variety of conventional
optimization methods such as Linear Programming
method,  Non-linear ~ Programming  method,
Quadratic Programming method, Newton’s method,
and Interior Point method [30]. However, all of these
methods have their own set of benefits and
drawbacks which will be discussed further.

3.2.0PF Problem Formulation

« The following is a description of a general
minimization problem:

« Minimize: f(x,u) (the objective function)
where f(x,u) is the objective function.

e Subject to: hi(x,u) = 0, i = 1,2,3,.... m
(equality constraints) where hi(x,u) is set of equality
constraints.

e gi(x,u) < 0, j =1,2,3, n (inequality
constraints) where gi(x,u) is set of inequality
constraints, u represents a set of controllable and x
represents dependent variables.

3.3.0Dbjective function

These objective functions vary from fuel cost
generation, active and reactive power transmission
loss, reactive power reserve margin, security margin

index, and emission environmental index [31].
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3.3.1.
Cost

The key objective of the OPF solution is to reduce
the system's total operating costs. When there is a
light load, the cheapest generators are always
chosen to run first. More expensive generators will
be brought in as the load increases. As a result, the
operational cost plays a critical part in the OPF
solution. The amount of fuel or input to a generator
is usually measured in British thermal units per hour
(Btu/hr) and the output in megawatts (MW) [30].

In all practical cases, the cost of generator i can
be shown as a function of real power generation,

Ci = [ai + (bi Pi) + (ci Pi2)] * fuel cost
3.1)

which is expressed in expressed in $/hr

Where Pi is the real power output of generator i,
and ai, bi, ci are the cost coefficients.

The incremental cost can be obtained from the
derivative of Ci with respect to Pi,

dCi/dPi = (bi +2ci Pi)* fuel cost
3.2)

which is expressed in $/MWhr.

3.3.2.  Minimization of
Transmission Loss

The OPF problem goal is to minimize the power
loss. The formulation of the real power loss can be
represented by [31]:

Minimizing PLoss = XPi = XPgi — XPdi, 1 = 1,

Minimization of Generation Fuel

Active Power

where PLoss is the total 12R loss in the
transmission lines and transformers of the network.

3.3.3. Minimization of Reactive Power
Transmission Loss

The total VAR loss is minimized as per the
following equation [31]:

Minimizing QLoss = 2Qgi —2Qdi,i=1, ....,Nb
(3.4)

3.5 Control and Dependent Variables

There are two relevant variables in an
optimization problem: independent/control
variables and dependent/state ones. Firstly, the
optimal value must be determined for control
variables to help minimize the objective function,

and then, based on it, state variables should be
calculated [4].

In the OPF problem, control variables may include
active power generation of all generator buses except
slack bus, the voltage of all generator buses,
transformers tap ratio, reactive power injection of
shunt capacitor banks, etc. Moreover, dependent
variables may also include an active power output of
the slack bus, voltage angles of all buses excluding
the slack bus, load bus voltages, reactive power
generation of generators. It should be noted that the
number of control variables determines the solution
space. In fact, a problem with n-control variables
results in an n-dimensional solution space [4]. The
classification of power system buses is shown in
Table 3.1 [31].

Table — 3.1: Classification of Power System
Buses.

Classifications Knowns Unknowns
Load Bus P,Q v, &
Generator Bus P,V Q8

Slack (Swing) V.8 P.Q

bus

3.4.Equality constraints

Both the physicality of the power system and the
required voltage set points are reflected in the OPF's
equality constraints. The power system physics is
enforced by power flow equations that require that
actual and reactive power injection for each bus
amount to zero [30].

This can be attained by the following analysis:

Pi=PLoad + PLoss  (3.5)

Qi =QLoad + QLoss (3.6)

where Pi and Qi are the active and reactive power
outputs respectively.

PLoad and QLoad are the active and
reactive load power respectively.
PLoss and QLoss are the active and

reactive power loss respectively.

The power flow equations of the network can be
given as:

G(V,8)=0(3.7)

where
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G(V,8) = Pi(V,8) - Pinet, Qi(V,5) — Qinet,
Pm(V,d) - Pmnet (3.8)
where Pi and Qi are the calculated real and
reactive power at PQ bus respectively
Pinet and Qinet are the specified real and
reactive power for PQ bus respectively
V and § are the magnitude and phase angle
of voltage at different buses respectively

3.5.Inequality constraints

Components and equipment in the power system
have operational limitations created to ensure
system security and minimize the required objective
function [30].

Inequality constraints:

Pgimin < Pgi < Pgimax (3.9)
Qgimin < Qgi < Qgimax (3.10)
>Pgi— PD —PLo0ss =0 (3.11)

where Pgi is the amount of generation in MW at
generator i.

Qai is the amount of generation in MVAR
at generator i.

The inequality constraints on voltage magnitude
V of each PQ bus

Vimin < Vi< Vi max (3.12)

where Vi min and Vi max are the minimum and
maximum values of voltages at bus i.

The inequality constraints on phase angle & of

voltages at all buses i
dimin < 61 < 6imax (3.13)

where dimin and dimax are the minimum and
maximum values of phase angle at bus i.

For a typical Microgrid system, the basic
components are given in Table 3.2 [12]:

Table - 3.2 Typical Microgrid components.

Unit Symbol Constraints

power line I I Constraints:
busi  busf Fij 1) < 1 j max
load Constraints:
T Pix(fy = -Prix(1) (fixed)
Qixlt) = -Qrixlt) (fixed)
Vienin < Vie(t) < Vie.max
Free variables: Vi(/), (/)
Renewable Constraints:
generator S Prel 1) P i) (fixed)
(G} | Oult) = +Qgic(t) (fixed)
~ !

min < V0 < Vg max
Free variables: V(7). du (1)
Ex(1) = stored energy or state
of charge (SOC)

storage
device

Where the PCC corresponds to the “slack™ bus. It is
always indexed as bus 1.

3.6. Conventional Vs Recent Optimization
Methods for OPF

The Conventional methods are based on linear
Objective Functions that apply sensitivity analysis and
gradient-based optimization algorithms. The
conventional optimization methods are illustrated
below [32]:

3.6.1. Linear Programming method

LP method is one of the fully developed methods now
in common use. It easily handles inequality
constraints. Non-linear objective functions and
constraints are handled by linearization [33]. LP
method is used for linearizing the problems of non-
linear system optimization; it is reliable. It has a good
convergence feature, but the main shortcoming is that
errors may occur due to digital computer rounding,
especially under constraints.

3.6.2. Non-Linear Programming method

NLP is a process of solving an optimization problem
where the constraints and the OF are non-linear. It
helps to find the best solution to a problem using
constraints that are not linear. The non-linear method
(NLP) is more precise than the linear method, where
non-linear objective functions and constraints can be
applied. The NLP techniques use the Lagrange
multiplier to use the reduced gradient method. The
significance of this method is that it can be applied in a
large-scale system, whereas the disadvantages are that
some system components are not taken into
consideration [32].
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3.6.3. Quadratic Programming method

A particular nonlinear programming approach can be
seen in quadratic programming (QP), where the
objective function is quadratic, and the constraints are
linear. The determination of gradient steps is not
necessary for this method. The solution that has been
obtained using the QP Method is more accurate
compared to the previous methods. In addition, it has
fast convergence characteristics [32].

3.6.4. Newton’s method

The Newton Method is commonly used in power flow
problems by applying second-order partial derivatives
to create the Lagrangian. It is a high-speed
convergence method, but it may give problems with
inequality constraints. It was proved that Newton-
Raphson converged in many cases. Moreover, most
Newton-Raphson power flow problems converge in
less than ten iterations. The disadvantages are that the
Newton-Raphson method requires high computer
storage and computation time, and it is very much
sensitive to the selection of initial conditions [33].

3.6.5. Interior Point method

IP method is one of the fully developed and widely
used methods for OPF. The IP method is generally
used for large problems to solve the optimal power
problem [32]. However, the results achieved by IP
results are better and require fewer iterations than LP.
It easily handles inequality constraints [33].

The conventional methods are not always appropriate
for optimizing the power flow since the optimal power
flow is a non-linear (non-convex) problem. Therefore,
new optimization methods are introduced to solve the
OPF. The advantages of these recent methods are the
following [32]:

1. They can be applied in small and large scale
systems

2. It has a high reliability

3. They converge rapidly compared to the

conventional methods.

The recent optimization methods can be classified as
follows [32]:

. Swarm
Techniques
The natural and bio-inspired algorithm is an emerging
approach based on the inspiration of the moving and

and Bio-inspired  Optimization

looking behavior of animals or birds for food sources.
. Human-Inspired Optimization Techniques
Various techniques of optimization simulate human
behavior, particularly when it comes to thinking or
making decisions.

. Physics-Inspired Optimization Techniques
Algorithms based on physics are conceptualized in
space through physics laws or natural phenomena.

. Evolutionary-Inspired Optimization
Techniques

Evolutionary optimization algorithms come from
natural selection mechanics and genetics or living
bodies or animals.

. Hybrid Optimization Techniques

Several algorithms have been proposed for hybrid
optimization to gain advantages of multiple techniques
and obtain better results than single techniques.

. Artificial Neural Network (ANN) and Fuzzy
Logic Approach

Artificial neural networks (ANNSs) are computational
methods that emulate the operation of biological neural
networks. At the same time, the fuzzy set theory is a
natural and appropriate tool for inaccurate relations.

4. Networked Microgrid Test System

A Microgrid can connect with the main grid by a DG
control entity to serve local loads. The balance between
the generation and load must be kept under all
operating conditions to keep the frequency and voltage
of MGs within operating limits. These DGs may be
dispatchable or non-dispatchable. For example, the
power generation from PV panels and wind turbines is
usually non-dispatchable. In contrast, the power output
from the microturbines, fuel cells, combined heat and
power (CHP), and diesel generators are fully
dispatchable. The grid, which serves as the MG's

slack bus, handles this balance in grid-connected mode.
While in an islanded mode, dispatchable DG must have
sufficient capacity to balance load and generation and
avoid load shedding.

Figure 4.1 shows the electrical single-line diagram of
the test system with comprehensive buses, loads, and
generation. A three-digit number is used to identify
each bus in the system. All lines, including the tie lines,
are underground cables. Table 4.1 shows more details
on the four microgrids [34].

The first bus of each microgrid (101, 201, 301, and
401) serves as the slack bus of that microgrid, and its
equipped with two or three units of conventional

50 December 21, 2023



Smart Load Flow Analysis using Conventional method and modern method.

International Journal of Automation and Digital Transformation
Vol 2 Issue 1 (2023) Pages (43 —66)

Synchronous Generators to allow the microgrid to
function effectively in isolated mode, with load
balancing and reactive power supported. While in
grid-connected mode, the slack bus of microgrid 1
(101) is the slack bus on the complete system [34].
Load and generation balance is performed through this
bus.

As shown in Table 4.1, microgrid 1 consists of 6
buses, 11 underground cables, and three standby
Synchronous Generators, each of 5000 kVA
connected to bus 101. Moreover, 3 PV panels are
installed at buses 102, 103, and 104. microgrid 2
consists of 9 buses, eight underground cables, and
three standby Synchronous Generators at bus 201.
Additionally, 3 PV panels (at buses 202, 203, and 204)
and 2 Wind Turbines (at buses 206 and 209) are
always available to generate power to the network.
microgrid 3 has 18 buses and 17 underground cables.
Bus 301 has three standby Synchronous Generators
and 6 PV panels (at buses 303, 304, 305, 306, 307, and
315) and 2 Wind Turbines (at buses 314 and 317).
Finally, microgrid 4 has seven buses and eight
underground cables, 3 PV panels at (at buses 405, 406,
and 407), and two standby Synchronous Generators
installed at bus 401. All these standby SGs are of equal
capacity and have self-starting capability [34].

The networked microgrid system is designed to
operate on 11 kV three-phase underground cables. The
utility feeder is a 33 kV three-phase single circuit
overhead line. In addition, there are three 20 MVA
parallel step-down transformers to maintain the
voltage of 11 kV at bus 101

€ | LR
B i :‘ A

Fig - 4.1 Single-line diagram of the Networked
MGs test system.

As shown in Figure 4.1, microgrid 1 can share
power with microgrid 2 through PCC1 and
microgrid 3 through PCC2. While microgrid 2 can
share power with microgrid 3 through PCC4 and

microgrid 4 with PCC3. microgrid 3 and microgrid 4
can exchange power through PCCS5. If a failure
occurs in microgrid 1, microgrid 2 and 3 can be
connected to the utility grid directly to ensure the
continuity of supply.

Table - 4.1 Details of Microgrids of the test
system.

Components MG1 MG 2 MG 3 MG 4
Buses 6 9 18 7
Lines 11 8 17 8
5Gs 3 3 3 2
PV Systems 3 3 6 3
WT Systems 0 2 2 0
Slack Bus 101 201 301 401
MG Type Meshed Radial Radial Meshed

The line and bus data are necessary to perform out
an optimal power flow analysis. The data from the
networked microgrid system lines such as resistance,
reactance, and cable length is presented in Table 4.2
[34]. Moreover, Table 4.3 shows the tie-cable data
between the microgrids [34].

Table - 4.2 Line Data of the Networked MG

51

System.
S. From To Length Resistance Reactance
No. (P.U)
Bus  Bus (km) (P.U)

1 101 102 3 0.7661 1.18

2 101 103 2.4 0.7715 0.991

3 101 104 3 0.7661 1.18

4 101 105 1.6 0.514 0.6604
5 101 106 1.6 0.514 0.6604
6 102 103 2 0.6429 0.825
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

102

103

103

103

104

201

202

202

203

203

204

204

208

301

302

302

302

303

303

304

304

305

305

306

306

307

307

309

311

105

104

105

106

106

202

203

206

204

207

205

208

209

302

303

309

311

304

313

305

314

306

315

307

317

308

318

310

312

1.5

1.2

1.2

1.5

1.4

1.6

1.5

2.2

1.4

1.8

1.2

0.8

1.2

1.8

1.5

1.4

1.2

1.5

1.4

1.4

1.6

1.4

1.5

1.4

1.5

1.7

1.5

1.2

0.4822

0.6429

0.3857

0.3857

0.4822

0.4500

0.5143

1.9710

0.7072

1.8396

0.5786

0.3857

1.0512

0.3857

0.5786

0.4822

1.8396

0.3857

1.9710

0.4500

1.8396

0.5143

1.8396

0.4822

1.8396

1.9710

0.5465

0.4822

1.5768

0.619

0.825

0.495

0.495

0.619

0.577

0.660

1.338

0.908

1.249

0.743

0.495

0.714

0.495

0.743

0.619

1.249

0.495

1.338

0.577

1.249

0.660

1.249

0.619

1.249

1.338

0.701

0.619

1.071

36 315 316 1.2 1.5768 1.071
37 401 402 0.6 0.3148 0.260
38 401 405 1 0.5247 0.433
39 401 406 1.8 0.9446 0.780
40 402 403 2 1.0495 0.867
41 403 404 0.6 0.3148 0.260
42 404 407 1 0.5247 0.433
43 405 406 1.5 0.7871 0.650
44 406 407 1.5 0.7871 0.650

Table - 4.3 PCC/Tie-cables Data.

S. Fro To Lengt Resistan Reactan

N m Bu h ce ce (P.U)

0. bus s (km) (P.U)

T1 102 20 1 0.2553 0.394
1

T2 104 30 1.5 0.3830 0.591
1

T3 208 40 2 0.6429 0.825
1

T4 205 31 2.5 0.8037 1.032
0

T5 318 40 1 0.3214 0412
4

A one-year dataset has been provided in this system.
Table 4.4 provides the load data for the Networked
Microgrids [34]. Table 4.4 indicates that the overall
system loads are 30.802 MW and 6.374 MW,
including critical loads of 6.16 MW and 1.27 MVAR.
In addition, the table lists three types of buses: 1) Type
1 bus: Slack bus; 2) Type 2 bus: Generator bus; 3)
Type 3 bus: Load bus (PQ bus).

Table - 4.4 Load Data of the Networked MG System.

Bus Bus Total Bus Load Critical Load Bus
ID Type kW kVAR kW kvAR ~ Load%
of

System
Load
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101 1 0 0 0 0 0
102 2 2125 336 450 68 6.9
103 2 3329 1023 650 124 10.81
104 2 2050 555 200 50 6.66
105 3 1257 310 200 35 4.08
106 3 1056 240 200 35 3.43
201 2 600 100 0 0 1.95
202 2 1250 487 500 80 4.06
203 2 1203 410 500 80 391
204 2 1366 443 650 138 4.43
205 3 764 36 0 0 2.48
206 2 503 21 0 0 1.63
207 3 345 11 0 1.12
208 3 629 8 0 2.04
209 2 642 12 100 25 2.08
301 2 580 150 0 0 1.88
302 3 650 85 250 50 2.11
303 2 673 96 0 2.18
304 2 439 135 0 1.43
305 2 600 128 250 50 1.95
306 2 560 112 0 0 1.82
307 2 851 145 385 50 2.76
308 3 420 25 0 1.36
309 3 500 45 0 1.62
310 3 637 33 0 2.07
311 3 788 95 350 83 2.56
312 3 125 50 0 0 0.41
313 3 169 20 0 0 0.55
314 2 200 43 0 0 0.65
315 2 250 32 125 25 0.81
316 3 213 12 0 0 0.69
317 2 133 25 0 0 0.43
318 3 200 38 0 0 0.65
401 2 426 80 0 0 1.38
402 3 318 78 125 20 1.03
403 3 356 81 125 20 1.16
404 3 459 88 0 0 1.49
405 2 820 91 0 0 2.66
406 2 2500 635 850 150 8.12
407 2 816 60 250 44 2.65
Total 30802 6374 6160 1127 100
Load

Bus DG PG QGmin QGmax Network
1D Type (kW) [KVAR)  (kKVAR) Area

102 PV 2000 0 400 MG1
103 PV 2400 0 480 MG1
104 PV 2000 0 400 MG1
202 PV 1600 0 320 MG2
203 PV 1600 0 320 MG2
204 PV 2400 0 480 MG2
206 WT 800 -250 250 MG2
209 WT 500 -200 200 MG2
303 PV 2000 0 500 MG3
304 PV 400 0 100 MG3
305 PV 800 0 160 MG3
306 PV 800 0 160 MG3
307 PV 800 0 160 MG3
314 WT 500 -250 250 MG3
315 PV 800 0 160 MG3
317 WT 1200 -600 600 MG3
405 PV 1600 0 320 MG4
406 PV 2400 0 500 MG4
407 PV 1600 0 320 MG4

Table - 4.6 Standby Synchronous Generators Data in
MGs

Bus Unit Numbe QGmi QGma Networ

D Capacit r of n X k
v Units (kVAR  [kVAR area
[kVA] ] )

10 5000 3 - 5000 MG1
1 3000

20 2000 3 - 2000 MG2
1 1500

30 2000 3 - 2000 MG3
1 1500

40 2000 2 - 2000 MG4
1 1000

The Energy Storage Systems are installed at different
buses, which are Lithium-ion batteries. With 80% of
DOD. The SoC of batteries is assumed to be 20% of
their total capacity. The details of the ESS are shown
in Table 4.7 [34].

Table - 4.7 Energy Storage Capacity.

Location  Battery Peak Network

Base voltage: 11 kV; Specified voltage at all buses:

1p.u.

Table 4.5 presents details of DERs installed at
different MG locations. Excess power is saved in
energy storage systems installed with each PV
system to use the stored energy when the PV solar is
unavailable. Also, the details of the Synchronous
Generators are presented in Table 4.6 [34].

Table - 4.5 Installed Capacity of PV and WT in MGs.

(BuaID)  Storage Power Area
Capacity  Supply
(kWh) (Kw)
102 3000 2000 MG1
103 4000 2400 MG1
104 3000 2000 MG1
202 4000 1600 MG2
203 4000 1600 MG2
204 4000 2400 MG2
303 3600 2000 MG3
304 800 400 MG3
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305 2000 800 MG3
306 2000 800 MG3
307 2000 800 MG3
315 2000 800 MG3
405 3000 1600 MG4
406 6000 2400 MG4
407 3000 1600 MG4

5. OPF in Microgrids using Newton-Raphson
method

For the networked microgrids illustrated in the
previous chapter, an Optimal Power Flow study will
be performed using Newton-Raphson method.

5.1.  Principle of Newton-Raphson method

A nonlinear equation in a single variable can be
expressed as:

f(x)=0 (5.10)

For solving this equation, select an initial value x0.
The difference between the initial value and the final
solution is Ax. Then x1 = x0 +Ax is the solution of
nonlinear equation (5.10). That is [35]:

f (x0 +Ax) =0 (5.11)

Expanding the above equation with the Taylor series
yields [35]:

f (x0 +Ax) = £ (x0) + £'(x0) Ax + (f "(x0)(Ax)2)/2! +
-+ (f(n) x0)(Ax)n)/n! +- - - =0 (5.12)

where f'(x0), ..., f (n) (x0) are the derivatives of the
function f (x).

If the difference Ax is very small (meaning that the
initial value x0 is close to the solution of the
function), the terms of the second and higher
derivatives can be neglected. Thus equation (5.12)
becomes a linear equation as below [35]:

f(x0 +Ax)=£(x0) + f'(x0) Ax=0 (5.13)
Then:

Ax =—f(x0)/f'(x0) (5.14)
The new solution will be:

x1 =x0 +Ax =x0—{(x0)/f'(x0) (5.15)

Since equation (5.13) is an approximate equation, the
value of Ax is also an approximation.

Thus the solution x is not a real solution. Further
iterations are needed. The iteration equation is [35]:
xk+1 = xk +Axk = xk — f (xk)f ’'(xk)
(5.16)

The iteration can be stopped if one of the following
conditions is met:

|AXK|< €1 or [f (XK)|< €2 (5.17)

where €1, €2, which are the permitted convergence
precisions, are small positive numbers.

The Newton method can also be expanded to a
nonlinear equation with n variables.

fl(x1, x2, ... ,xn)=0
2(x1,x2,...,xn)=0

fn(x1,x2,...,xn)=0

For a given set of initial values x1, x2, ... , xn, we
have the corrected values Ax1,Ax2, ... ,Axn. Then:
fl(x1 +Ax1, x2 +Ax2, ..., xn +Axn)= 0

2(x1 +Ax1, x2 +Ax2, ..., xn +Axn) =0

fn(x1 +Ax1, x2 +Ax2, ..., xn +Axn) =0

Similarly, expanding the above equations and
neglecting the terms of second and higher derivatives,
a matrix can be formed to find the solution at kth
iteration [35]:

e _ﬁ' ﬂ‘ L)
fi (a8, ) oxy | 43:; ‘A (;::” o A
ok ok k ez =2 cee mad Ak
H 3y ) =_|9x o 0x3 | 0%y | ok ax;
L . daf, af, 9 Axk
,fn(“r“g' s 2 Xp) ax, . ax, o ax, ‘.’u‘
xk+li=xki+Axki 1=1,2,...,n (5.18)

The above two equations can be expressed as
F(Xk) = -JkAXk (5.19)
X k+1 = Xk +AXk (5.20)

where J is an n x n matrix called a Jacobian matrix.

5.2 Power Flow Solution
The complex voltage, real and reactive powers of each
bus:

(5.21) V, = Vi(cos 0, + jsin6,)
P;=V; ) Vi(G;cosb;+ B;;sinb;)
(5.22) 2,16 ’
Q;=V; ) Vi{G;sinb; — Bjicosb;)
(5.23) %, ViGysinty B

where 0ij = 6i — 0},
which is the angle difference between buses i and j.
For each PV or PQ bus, we have the following real
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power mismatch equation:

AP;=P,—-P; =P, — 1-"2 Vi(Gycos6;;+ By sin ;) = 0 (524)
= For each
PQ bus, we also have the following reactive power

equation

n
AQ;=0Qi—0Qi=0Qy— V:ZI, V/(Gysin6;— By cosfy) =0 (5.25)
=

where Pis, Qis are the calculated bus real and reactive
power injections, respectively.

According to the Newton method, the power flow
equations (5.24) and (5.25) can be expanded into
Taylor series and the following first-order
approximation can be obtained [35]:

[AP Af

_ 5.26
aAQ| = “'L\.wv] (5.26)

where
AP AQ,
AP = Af’: AQ= AQ‘
AP, AQ,
AB, AV, (5.27)
ao=| 2% | av=|A"
) AV

n—1 m

The steps for calculation of the Newton-power flow
solution are shown in the following flowchart:

Input Data

Form Admittance matrix

‘ Aszume the initial values of bus voltage |

Compute the power mismatch according to equations (5.24) and (5.25) ‘

Is Convergent?
No

‘ Compute the elements in the Jacobian matrix ‘

l

‘ Compute the corrected values of the bus voltage using equation (5 286) |

Qutput Result

Modify Voltage at each node

Fig - 5.1 FlowChart of Newton-Raphson method.

5.3. Power Flow Results using Newton-Raphson
method

After applying the Newton-Raphson method to the
networked microgrids, the results are shown in the
following sections:

5.3.1. Using Storage as a load:

Using the line and bus data provided in the previous
chapter for the networked microgrids, the power flow
solution is obtained using the Newton-Raphson
method with MATLAB computations. This yields the
results shown in Table 5.1. Note that for more
accessible dealing with numbers, the three-digit
numbers for buses from 101 to 407 are described as 1
to 40 buses.

Table - 5.1 Power Flow Results using Newton-
Raphson — Storage as Load.
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In the first case where the storage systems are
considered as loads, the ESS, which is installed next
to each PV system, will absorb the generated
power and store it in the batteries—assuming that
from 6 A.M to 6 P.M, the energy from the sunlightis
absorbed by the PV cells in the panel to produce
electricity. Wind Turbine, the PV system, and the
synchronous generators units are operating, the
batteries are charged from the PV system. The
calculations through MATLAB Software has
convincing results:

. A constant voltage for nodes such as 1 and
7, and a particular variation limit for others.

. The balance of the system is ensured as the
loads should be equal to the generated power from
the sources. As shown in Table 5.1, the load is
designed to be 54.002 MW, while the generation is
56.062 MW.

. The losses are calculated to be 2.065 MW/
2.582 MVAR due to cable length, resistance, and
reactance.

. The execution time is 1.263629 seconds.

. The number of iterations is 11.

o Maximum Power Mismatch = 1.15132e-05.

5.3.2. Using Storage as a source:

In the second case, from 6 P.M to 6 A.M, the ESS is
considered to be a source that can generate power
to maintain system balance and reliability when the
PV system is not operating while wind turbines and
synchronous generators units are operating. The
batteries are discharging with a DOD of 80%. Table
5.2 illustrates the power flow results when the
batteries are discharging.

The following are observed from the power flow
output:

A constant voltage for multiple nodes and a certain
variation limit for others.

As shown in Table 5.2, the load is designed to be
30.802 MW, while the generation is 31.697 MW.
The losses are calculated to be 0.896 MW/1.149
MVAR due to the cable length, cable resistance, and
reactance

The execution time is 1.032611 seconds.

The number of iterations till convergence is 10.
Maximum Power Mismatch = 1.98777e-06.

Table - 5.2 Power flow Results using Newton-
Raphson - Storage as Source.
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6. OPF in Microgrids using Neural-Network
method

After applying the Neural-Network method to the
networked microgrids, the results are shown in the
following sections:

6.1. Principle of Neural Network method

The evolutionary computing of Artificial Intelligence
is solely entering the world and spreading the idea that
it is easier and more intelligent than the conventional
methods in performing complex tasks. The Neural
Network displays spatial capacities based on human
logic.

Neural networks are a subset of machine learning and
are the heart of deep learning algorithms, also known
as artificial neural networks(ANNSs) or simulated
neural networks (SNNSs). Their name and structure are
inspired by the human brain, imitating the working
strategy of the brain using mathematical methods to
match the biological neuron [36].

Neurons are the simplest processing element of an
ANN. ANNSs consist of node layers, including an input
layer, one or more hidden layers, and an output layer,

as shown in Figure 6.1 [36]. Each node is linked to
another and has several elements such as weight,
activation function, and threshold. The nodes represent
computational units and need inputs that should be
processed in neurons to present the output. Weights are
multiplied with inputs and then added in the summing
function, then the sum is processed in the activation
function. The output is then passed via an activation
function to determine the output. If the output exceeds
a threshold, the node is activated, and the data is passed
into the next network layer. This results in the output
of one node, which becomes the input of the next node.
This data transmission procedure from one level to the
next characterizes this neural network as a feedback
network. The output is generated as shown in Figure
6.2 and the equations (6.10) and (6.11) [37].
Depending on the nature of the NN's system, the hidden
network layers can be set in numerous ways. When
weights are generally calibrated on the branched
hidden layers, a relatively sophisticated approach
called backpropagation was considered.

Deep neural network
Multiple hidden layers

Output layer

Fig - 6.1 Neural Network Architecture.

X w,
Activation Function
W2 2 »
X2 f Zx.:w.' —\> J’j
=
Xn=" w,

Fig - 6.2 Neuron Mathematical Function.

yj = x1-wl + x2-w2 + x3-w3 + Xn-wn (6.10)

[xi - wi) (6.11)

There are a few different forms of learning/training
based on operation or system in which the neural

network, the most generally used and known learning
57 December 21, 2023



Smart Load Flow Analysis using Conventional method and modern method.

International Journal of Automation and Digital Transformation
Vol 2 Issue 1 (2023) Pages (43 —66)

approach, is applied [37].

e Supervised Learning: the NN is fed with
labeled datasets to find the correct decision at
the test stage; the more this training/learning
process, the more the accuracy [37].

e Unsupervised Learning: the NN is fed with
unlabeled datasets (containing only the input
data). The ANN will be able to categorize the
data by clustering the data according to the
distances and finding the patterns [37].

e Reinforcement Learning: it is a kind of
Learning that involves the surrounding
environment, starting by getting a state, taking
action to change the state, and sending that
action to either get a penalty or reward, to learn
from its experience and reach the goal [37].

The steps of how the Neural Network works is shown
in the following flowchart in Figure 6.3.

Initialize Input

Define and format network input and target
data

A4

Divide data into three sets: Training data,
Testing data, and Validation data

‘ Create Feed-forward Backpropagation

N|

| Display and train the Network ‘

No

Is the training
performance met?

Simulate Network and
generate the output data

Fig - 6.1 FlowChart of Neural Network method.

6.2 Neural Network Training Algorithms
6.2.1 Feed-Forward Propagation

The input data is forwarded throughout the network in
the feed-forward network. Every hidden layer accepts,
processes, and passes the input data in accordance
with the activation function. In other words, the
information moves only in one direction — forward-
from the input nodes, through the hidden nodes and to
the output nodes, there are no cycles or loops in the

network. The feed-forward network helps in forward
propagation.

The processing takes place in two steps at each neuron
in the hidden or output layer:

a. Preactivation: it is a weighted sum of inputs.
Based on this aggregated sum and activation
function, the neuron decides whether to pass
this information or not.

b. Activation: the calculated weighted sum of
inputs passed to the activation function. The
activation function is a mathematical function
which adds non-linearity to the network. There
are four commonly used and popular activation
functions — sigmoid, hyperbolic tangent (tanh),
ReLU, and Softmax.

6.2.2 Backpropagation

The backpropagation is an efficient algorithm for
training feedforward neural networks; it computes the
gradient of the loss function concerning each weight by
the chain rule, one layer at a time. Then, it iterates
backward from that last layer and adjusts the weights
between the input and the neuron to reduce the cost
function and minimize the loss, as shown in Figure 6.4
[38].

-
Differencen
desired values

'.....
Backprop output [ayer

Fig - 6.2 Backpropagation.

6.2.3 Gradient Descent

The Gradient Descent is an algorithm for finding a
local minimum of a differentiable function. It is used in
machine learning to find the values of a function’s
parameters/coefficients that minimize a cost function.
The idea of this algorithm is to take repeated steps in
the opposite direction of the gradient of a function at
the current point (direction of the steepest descent).
While if the steps were taken proportional to the
positive of the gradient, the local maximum of a
function would be approached, this is so-called
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Gradient Ascent as shown in Figure 6.5 [39].

»

Initial

Weight 'l Gradient

\ i
1
1
]
Incremental ’
Step \ ’
1

I

J

//

!

]

/'

/ Minimum Cost

>
>

Cost

/

Derivative of Cost

Weight

Fig - 6.5 Gradient Descent.

To perform the training phase in MATLAB for the
optimal power flow problem, the learning algorithm
used was the Levenberg—Marquardt (LM)
backpropagation. The Levenberg-Marquardt
algorithm is designed to work specifically with loss
functions which take the form of a sum of squared
errors. It works without computing the exact Hessian
matrix. Instead, it works with the gradient vector and
the Jacobian matrix.

Levenberg-Marquardt is a combination of two other
methods: The Gradient Descent and Gauss-Newton.
Both methods are iterative algorithms, which means
they use a series of calculations to find a solution. The
gradient descent differs in that at each iteration, the
solution updates by choosing values that make the
function value smaller. In other words, the sum of the
squared errors is reduced by moving toward the
direction of steepest descent. Whereas, the Gauss-
Newton is more accurate and faster than the gradient
descent when close to the minimum error [40].

6.3.  Power Flow Results using Neural Network
method

To get the power flow results for the Networked
Microgrids when the storage is either operating as a
load or as a source using Neural Network, the tool
which is used in MATLAB is the ‘nntool’ which opens
the Network/Data manager window, which allows for
importing, creating, using, and exporting Neural
Networks and data.

6.3.1 Using Storage as a Load:

The custom neural network when the batteries are
charging during the day is shown in Figure 6.6, Input
(P) which is the input matrix that represents power

demands and generation from the bus data as shown in
Table 6.1.

Hidden Layer

Output Layer

Fig - 6.3 Custom Neural Network — Storage as Load.

Table - 6.1 Input Matrix - Storage as Load.

Ioad
MW
0.000
4.125
0.000 5.729
4. 050
0.000 1.257
1.056
0.600
2.850
2.803
3.766
0.764
0.503
0.345
0.629
0.642
0.580
0.650
2.673
0.839
1.400
1.360

Voltage
Mag.
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

Generation
MW Mvar
15.000
2.000
2.400
2.000
0.000
0.000
6.000
1.600
1.600
2.400
0.000
0.800
0.000
0.000
0.500
6.000
0.000
2.000

Mvar
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0336
1.023
0.555
0310
0240
0.100
0487
0410
1.000
1.000
1.000
1.000
1.000
1.000

0443
0.036
0.021
0011
0.008
0.012
0.150
0.085
0.096
0.135
0.128
0112
0145
0.025
0.04as
0.033
0.095
0.050

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0400
0.800
0.800
0.800
0.000
0.000
0.000
0.000
0.000
0.000
0.500
0.800
0.000
1.200

1.651
0.420
0.500
0.637
0.788
0.125
0.169
0.200
1.050

0.020
0043
0032
0012
0.025
0.038

0.213
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Target (T) represents the desired output resulted from
Newton-Raphson method shown in Table 5.1.

Using Feed forward backpropagation network, and the
learning was performed according to the Levenberg-
Marquardt algorithm (trainlm).

The simulation gives the following results:

Network Regression
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Training: R=0.98 Validation: R=0.92943

the network output and the targets according to epochs.
The MSE is measured on the training, validation and
testing sets.

Neural Network Training State

Gradient = 0.25029, at epoch 18

gradient
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Mu = 0.01, at epoch 18

O Data
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Y=T

O Data
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YT

0.88*Target + 0.00041

Output ~= 0.8*Target + 0.11

o
Output ~

Target Target

Fig - 6.7 Training, Validation, and Test
Regression - Storage as Load.

The Network Regression figure displays the output of
the network versus the target sets for training,
validation and testing. To have the best results, the
regression line should be fit at 45 degrees where all the
outputs are equal to the targets. As shown in Figure
6.7, the R value equal to 0.96017, so the fit is
extremely good as the value is close to ‘1’where it is
100% precise.

Neural Network Training Performance

Best Validation Performance is 4.1941 at epoch 12
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Fig - 6.4 Training Performance - Storage as Load.

The performance is calculated using the mean squared
error. It minimizes the sum of squared errors between
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Fig - 6.5 Training State - Storage as Load.

The Training state represents the current
progress/status of the training at a specific time while
training is in progress.

Output (Y)

The output matrix of the neural network method:
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Table - 6.2 Power Flow Results using Neural
Network — Storage as Load.

Bus Joltage  Angle Load Generation
No. Mag. Deg. MW Mvar MW Mvar 50 6
1 09858 -0.1886 0.1030 00722 135927 -3.0245 ;
2 09850 -16073 43581 04504 25360 -0.0523 Fig - 6.6 Custom Neural Network — Storage as
3 09806 -18750 56576 09660 23955 42582 Source.
4 09785 -23169 40955 05873 20179 14168
5 09846 -20335 12375 02213 01468 02413 Table - 6.3 Input Matrix - Storage as Source.
6 09853 -42079 10783 0.1644 01415 -0.0267
7 09708 -3.6440 01662 00135 56461 18435 N —. Load Ceneration
8 09808 -3.1096 26910 03831 15354 -03074 Mag Deg MW  Mvar MW Mvar
9 009839 -68049 27535 03076 15149 -1.2200 St ‘pede i BiGd i  Bise
10 09817 -21566 39319 04621 19786 -0.0881 1.000 0.000 2125 0.336 1.600 0.000
11 09816 -9.1327 08068 00753 03354 00926 1000 0000 3320 1023 1920  0.000
12 09816 -96871 03513 00499 04705 08720 1000 0000 2050 0555 1600  0.000
13 09858 -10.5819 03939 00545 02533 03314 ig gg iézz giig gg gg
14 09828 -10.0002 06583 00663 03382 04934 %6 oo bi 0fts é06  Bos
15 09810 -99858 05342 00582 04527 0.8061 1000 0000 1250 0487 1280  0.000
16 09681 -35928 0.1499 00176 6.0692 009833 1.000 0.000 1203 0410 1280 0.000
17 09840 -87449 06719 00835 02165 -0.3206 1000 0000 1366 0443 1920  0.000
18 09852 -9.5356 25584 02080 19494 -0.6293 1000 0000 0764 0036 0000  0.000
19 09827 -80721 07627 00945 02418 -0.1095 }% g% gggg ggf: gg gg
20 09774 -121792 14015 00728 05594 -0.1504 il Ohe 66w Gdle o0 808
21 09767 -122331 13422 00708 05871 -0.1144 1000 0000 0682 0012 0500 0000
22 09783 -13.6664 17753 00713 0.6568 -0.0974 1000 0000 0580 0150 6000  0.000
23 09850 -10.1224 04522 00600 02517 0.1501 1000 0000 0650 0085 0000  0.000
24 09844 96240 05218 00675 02415 -0.0668 1000 0000 0673  009% 1600 0000
25 09828 92620 06635 00704 02991 0.0978 e sk e wE e R
26 09832 -79221 08306 00899 02359 -0.3456 fe GiE Wwa fiv el G
27 09884 -11.1737 02597 00543 01719 -0.0989 1000 0000 0851 0145 0640  0.000
28 09877 -10.9879 02820 0.0492 02091 0.1566 1000 0000 0420 0025 0000  0.000
29 09864 -10.5942 02302 00470 02673 0.2407 1000 0000 0500 0045 0000  0.000
30 09765 -11.8424 09102 0.0645 06521 06589 1000 0000 0637 0033 0000  0.000
31 09872 -109634 03064 00495 02254 02714 e I e i ek e
32 09850 -11.1004 0.1544 00327 04583 0.6949 yide OD6 ouS OMe GMe A
33 09875 -10.9334 02977 0.0540 01935 -0.0231 1000 0000 0200 0043 0500  0.000
34 09738 -7.6289 01245 00180 22527 18314 1000 0000 0250 0032 0640  0.000
35 09871 -11.0323 03688 00697 01650 -02588 1000 0000 0213 0012 0000  0.000
36 09868 -10.8727 03959 0.0722 0.1668 -02764 :g gg 841(3)3 gg;g ;x gg
37 09860 -102761 04794 00783 0.1742 03153 i PalB G odk ids e
33 09822 -139883 25025 0.1230 16677 0.1972 1000 0000 0318 0078 0006 0000
39 0.9854 -155244 49251 06079 24151 24414 1.000 0.000 0356 0.081 0.000 0.000
40 09828 -144144 25165 01354 16680 12862 1000 0000 0450 0088 0000  0.000
) .
Total 537001 62939 553500 11.8400 i i g% S0 e sow
1.000 0.000 0816 0.060 1.280 0.000
e Number of iterations: 18 iterations Target (T) represents the desired output resulted from
e Execution time: Less than one second Newton-Raphson method shown in Table 5.2.

e Total Losses: 1.6508 MW/5.5460 Mvar Using Feed forward backpropagation network, and the
learning was performed according to the Levenberg-
Marquardt algorithm (trainlm).

6.3.2  Using Storage as a Source: _ The simulation gives the following results:
The custom neural network when the batteries are Network Regression

discharging during the night is shown in Figure 6.10,
Input (P) which is the input matrix that represents
power demands and generation from the bus data as
shown in Table 6.3.
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Fig - 6.9 Training State - Storage as Source.

Target Target

. . I ] Output (Y)
Fig - 6.7 Training, Validation, and Test Regression - The output matrix of the neural network method:

Storage as Source.

As shown in Figure 6.11, the R value equal to 0.93546,
so the fit is extremely good as the value is close to
‘I’where it is 100% precise.

Neural Network Training Performance

Best Validation Performance is 0.91274 at epoch 4

Train
Validation
Test
- Best

O)

=)
C

Mean Squared Error (mse)

10 Epochs

Fig - 6.8 Training Performance - Storage as Source.

The performance is also calculated using the mean
squared error. It minimizes the sum of squared errors
between the network output and the targets according
to epochs. The MSE is measured on the training,
validation and testing sets.

Neural Network Training State
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Table - 6.4 Power Flow Results using Neural
Network — Storage as Source.

Network — Storage as Source.

Bus  Voltage Angle Load Generation
No Mag Deg MW Mvar MW Mvar
1 1.0092 0.2838 0.02977 0.0262 -58046 -4.1702
2 097238 1265 2425 0.38396 15628 6.3557
3 097189 1.0938 33181 099196 18413 -0.56262
- 097729 26381 20767 051679 10866 59044
5 098658 1.88 14252 040696 0.03983 0.38936
6 098901 1844 1.1758 032921 -0.17592 -0.14076
7 099074 34858 1.0247 0.08028 5682 -1.8862
8 098442 32515 1.1717 042499 15694 -0.18368
9 099117 3525 11826 0.38909 13492 0.34752
10 0098483 37172 14808 0.38293 19573 -0.5673
11 098092 45107 0.71925 0.07099 0.11056 0.20475
12 098595 53936 048716 0.05353 0.67926 1.53E-01
13 098851 5549 037749 0.04492 0.05979 -0.01387
14 0098227 47898 059489 0.05639 -0.00274 0.069046
15 098201 5.0284 063701 0.05988 0.34453 0.25935
16 099509 4.0529 091689 0.11608 5.7863 -3.463
17 0098717 5.0966 055391 0.07118 0.1824 -0.64944
18 098795 6.0261 067516 0.09174 14917 0.030751
19 099718 6222 043683 0.07833 0.27891 -0.9201
20 099298 58749 051939 0.09033 0.69162 -0.94188
21 099261 58784 047999 0.07639 0.74422 -0.73821
22 0098581 4.8025 081295 0.15776 0.73723 -0.3179
23 0098811 54695 041129 0.04709 0.11427 -0.01091
24 098794 53808 044958 0.05155 0.17118 -0.18172
25 0.98366 4.8788 0.56878 0.05846 0.12703 -0.11577
26 098372 44673 070157 0.09489 01762 -0.37513
27 099493 582 02601 0.04495 0.12827 0.20652
28 099248 5.7303 0.28316 0.04311 0.06701 -0.04509
29 099401 57515 027064 0.04661 0.62316 0.21691
3 099249 56776 029571 0.04705 0.72359 0.17201
31 099116 56994 030772 0.0432 0.04851 -0.07655
32 099368 52246 020477 005228 13737 0.27519
33 099342 58418 029412 0.04386 0.10715 0.15153
34 099448 48439 04688 0.07508 42868 2.7764
35 0.9947 6.0262 0.35272 0.05084 0.13576 0.055875
36 099431 59946 037131 0.05248 0.1382 -0.08139
37 099278 58157 042556 0.05828 0.14491 -0.47658
38 0098211 5.6262 090928 0.1141 1.2605 0.48675
39 098163 6.2446 24745 0.66272 18831 65345
40 0.9802 54537 09934 0.09916 10581 093375
Total 32.5643 6.58558 32.7791 9.604568

e Number of iterations: 10 iterations
e Execution time: Less than one second
e Total Losses: 0.214 MW/3.018 Mvar.

7. Discussion and Conclusion

7.1 Discussion
Power flow or load-flow studies are essential for
planning the future expansion of power systems and
determining the best operation of existing systems.
The principal information obtained from the power
flow study is the magnitude and phase angle of the

voltage at each bus and the real and reactive power
flowing in each line. Therefore, it is essential for the
reliable and efficient operation of electrical networks.
In this paper, optimal power flow is obtained for a
networked microgrids system involving loads,
decentralized sources of renewable energy (Solar PV
panels and Wind turbines) and batteries as storage unit,
using a conventional method (Newton Raphson
method) and compared to a modern method (Neural
Network method or Artificial Neural Network (ANN)).
According to the results obtained above from
MATLAB optimization and deep learning toolbox. The
efficiency of the two methods is shown in Table 7.1 and
Table 7.2.

In the first case where the batteries are operating as
load, the losses efficiency are described in Table 7.1:

Table - 7.1 Comparison between NR and NN
methods - Storage as Load.

Optimization Method Losses and Efficiency

2.065 MW — 96%
efficiency

Newton-Raphson
method

1.6508 MW —97%
efficiency

Neural Network method

In the second case where the batteries are operating as
source, the losses and efficiency are illustrated in Table
1.2:

Table - 7.2 Comparison between NR and NN
methods - Storage as Source.

Optimization Method Losses and Efficiency

Newton-Raphson 0.896 MW — 97.1%

method efficiency

Neural Network method | 0.214 MW - 99.3%
efficiency

It is clearly shown that losses when the Neural Network
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was applied are lower and could produce more
efficient results than the Newton-Raphson method.
Also, the execution time is less when the OPF is
performed using the Neural Network method, even
though the iterations are more. For the Newton-
Raphson method, the execution time takes more than
one second in both cases. Still, Neural Network, a
rapid convergence method, takes less than a second to
convergence. The regression value is 0.93-0.98,
approximately equal to 1, indicating that the results are
good and have high accuracy and precision. According
to the results obtained from both methods, it is clearly
shown that the Neural Network method gave more
accurate results and achieved the balance between
load and generation to minimize the losses as much as
possible. In other words, the generated active power
from each bus was more accurate, and it was sufficient
to supply the load with minimum losses. Furthermore,
both methods did almost the same in producing other
values, such as the bus voltages and angles.

7.2.  Conclusion

This research focuses on studying the optimal power
flow using a conventional method (Newton-Raphson)
and Al method (Neural Network) for a networked MG
test system. The load flow analysis considered two
cases, when the storage units are charging from the
generation sources during the day and when the
storage units are supplying power at night to
compensate the power when the PV panels can’t
generate power. Both methods were performed using
Optimization and Deep Learning toolboxes in
MATLAB. The Neural Network method based on Al
represents more efficient results with minimum losses
compared to the conventional method.

In future work, there are various technologies to be
added to the microgrids architecture such as multiple
energy storage systems (flywheels, electrolyzer-fuel
cell), different energy rates related to the cost of the
grid power depending on the target load (storage
charge or consumer feeding), integrating the EVs to
the microgrids which can help in global warming
concerns and other grid services such as peak shaving
and load shifting to increase the reliability of the
system. The networked MG can also be used to
validate other studies in the extended work, including
reliability and resiliency analysis, economic dispatch,
control and stability studies, and protection analysis.
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