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Abstract 

 

 
Abstract - The optimal power flow for networked microgrids with different renewable energy sources (PV 

panels and wind turbines), storage systems, generators, and load is investigated in this study. A conventional 

method and an Artificial Intelligence method are applied to solve the OPF problem. The performance of MGs 

system with renewable energy integration was investigated in this study, with a focus on power flow studies. 

The power flow is calculated using the well-known Newton-Raphson method and the Neural Network method. 

The power flow calculation is used to assess grid performance parameters like voltage bus magnitude, angle, 

and real and reactive power flow in system transmission lines. under given load conditions. The standard test 

system used was a benchmark test system for Networked MGs with four MGs and 40 buses. The data for the 

entire system has been chosen as per the IEEE Standard 1547-2018. The results showed minimum losses and 

higher efficiency when performing OPF using NN than the Newton-Raphson method.  The efficiency  of the 

power system for the networked MG is 99.3% using Neural Network and 97% using the Newton- Raphson 

method. The Neural Network method, which mimics how the human brain works based on AI technologies, 

gave the best results and better efficiency in both cases (Battery as Load/Battery as Source) than the 

conventional method. 

Keywords: Optimal Power Flow, Microgrid, Newton-Raphson, Neural Network. 
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1. Introduction 

 
The electric energy network is a complex and in- 

terconnected system commonly known as the grid. 

Growing electricity demand requires more sustain- 

able and renewable energy sources. Nowadays, a 

massive transformation of the current electric energy 

system is observed. For instance, the energy flow 

becomes bidirectional due to the Distributed Gener- 

ations (DG) plants where the energy is transferred 

between several nodes of the power grid/Microgrid, 

according to the changing demands [1]. 

A microgrid is a more intelligent and efficient 

mini-version of the electric grid. The electric grid is 

made up of interconnected sub-systems, namely gen- 

eration, transmission, and distribution. On the other 

hand, the microgrid is a decentralized group of elec- 

tricity sources and loads that are synchronized with 

the electrical grid but can be disconnected and oper- 

ate autonomously in “Island Mode.” It can serve a 

small localized area to keep the power flowing when 

the electrical grid is down, protect the microgrid 

from power outages by relying only on their own, 

serve the larger grid, and provide clean and green 

energy since they are fueled mainly by renewable en- 

ergy sources (RES) [2]. 

Such a new scenario requires new systems that 

can allow the power grid to be smart by managing 

the bi-directional energy flow. Figure 1.1 shows the 

current plan where different distributed generation 

plants supply the energy to customers and the sur- 

plus power is injected back to the grid [1]. In ad- 

dition, the improvements in storage technologies al- 

low more flexible operation and reliable management 

of energy. Therefore, RES associated with storage 

units is considered as actively distributed generators, 

which is one of the essential elements of the “Smart 

Grid” concept [3]. 

Bulk power generators are complicatedly con- 

nected to the transmission system, whereas the sim- 

ple design of distribution networks allow many cus- 

tomers to easily connect to them and be the pro- 

sumers. The Generating Companies (GenCos) seek 

to maximize the utilization of the existing generation 

resources by using the appropriate load distribution. 

However, the Transmission Companies (TransCo) 

tend to keep standard operating conditions in terms 

of low transmission line congestion, high value of 

minimum bus voltage, and low level of transmission 

loss [4]. Loss reduction can be achieved through the 

appropriate control of Distributed Generation (DG) 

resources in the distribution systems, or more gen- 

erally, through the management of dispatchable re- 

sources (DG, load, storage), which can be effectively 

assessed using Optimal Power Flow problem. 

 
1.1. Objective and Methodology 

The employment of the OPF in smart grids is re- 

garded as a new development in power system stud- 

ies. Therefore, this work aims to study the optimal 

power flow problem in microgrid by determining the 

best way to optimize the flow of power using the 

Newton-Raphson approach and the Neural-Network 

approach. The optimization of the power flow using 

the Newton Raphson method and Neural-Network 

method will be performed using simulation. In ad- 

dition, the impacts of the distributed generations, re- 

newable energy sources, storage systems, and EV 

Charging stations are investigated. 

 
1.2. Work Organization 

Section II gives an overview of previous publica- 

tions covering OPF. Section III gives an  overview of 

the Optimal Power Flow. Section IV highlights the 

study of OPF using Newton-Raphson method. In 

Section V, the OPF Study using the Neural-Network 

is analyzed. Discussions and conclusions are drawn 

in Section VI and VII respectively. 

 

 

 

 

 
Fig - 1.1 Current Scenario of the power grid. 

 

2. Literature Review 

Lin and shen [5] showed that utilizing renew- able 

energy sources to reduce carbon emission and 

minimizing the fuel cost for energy saving in the 

OPF problem will reduce the global warming effect 
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from the power generation sector. In this paper, a 

DPOPF (distributed and parallel OPF) algorithm for 

the smart grid transmission system with renewable 

energy sources was proposed to account for the fast 

variation of the power generated by renewable en- 

ergy sources. The proposed DPOPF algorithm com- 

bines the recursive quadratic programming method, 

and the Lagrange projected gradient method. The 

proposed algorithm can achieve the complete decom- 

position and be implemented in the smart grid trans- 

mission system to make distributed and parallel com- 

putation possible. results confirm that the comput- 

ing speed of the proposed DPOPF algorithm is fast 

enough to cope with the fast variations of the power 

generated by renewable energy sources. A PSO (Par- 

ticle Swarm Optimization) was presented in [6] to 

find the most optimal locations and sizes of DGs, 

with the objective function to minimize the system’s 

total cost, real power loss, and the number of the in- 

stalled DGs. Firstly, a radial distribution power flow 

(PF) algorithm is executed to find the global opti- 

mal solution. Then, with respect to voltage profile, 

THD and loss reduction and by using the sensitiv- 

ity analysis, PSO is used to calculate the objective 

function and to verify bus voltage limits. To include 

the presence of harmonics, PSO was integrated with 

a harmonic power flow algorithm (HPF). The pro- 

posed (PSO-HPF) based approach was tested on an 

IEEE 15-bus radial distribution system. According 

to the authors, these scenarios yield efficiency in im- 

provement of voltage profile and reduction of THD 

and power losses; it also permits an increase in power 

transfer capacity and maximum loading. According 

to Pazheri et al. [7], an economic/environmental dis- 

patching (EED) problem formulation was presented 

for a hybrid system that comprises thermal units, the 

solar, wind, and storage unit. The study was sim 

ulated using MATLAB/Simulink. A consistent op- 

timum EED was obtained by extracting maximum 

renewable energy during their availability and using 

them for both available and unavailable periods with 

the aid of their storages. In [8], Atwa et al. proposed 

a probabilistic planning technique to allocate various 

DG types (wind, solar, biomass) in the distribution 

system with an Objective Function to minimize the 

energy loss. The results reveal that regardless of the 

combination of the renewable resources used to cal- 

culate the optimal fuel mix, there is a significant re- 

duction in the annual energy loss. An optimal control 

model of a heat pump water heater (HPWH) supplied 

by a wind-generator-PV-grid system was presented 

in [9] with an OF is to minimize the overall energy 

cost. This problem was solved using a mixed inte- 

ger linear program. The results show a 70.7% cost 

reduction upon implementation of this intervention. 

Sanseverino et al. [10] showed an execution moni- 

toring and re-planning approach to solve the optimal 

generation dispatch problem in smart grids with OF 

to minimize the carbon emissions, production costs 

and improve the quality. The replanning module is 

based on a heuristic multi-objective optimizer able 

to efficiently incorporate constraints. The obtained 

results were encouraging and suggest to incorporate 

into the Microgrids software technology approaches 

for managing uncertainties. A smart energy manage- 

ment system (SEMS) was presented in [11] to 

optimally organize the power production of DG 

sources and energy storage systems and minimize the 

micro- grid operational costs. The results show that the 

fore- casting model is able to predict hourly power 

gener- ation according to the weather forecasting 

inputs. 

Similarly, an optimal energy management system 

of storage devices in grid-connected microgrids was 

presented in [12], where the stored energy is con- 

trolled to balance the loads and renewable sources 

and minimize the total cost of energy at the PCC 

(Point of Common Coupling). Bracale et al. [13] pre- 

sented an optimal control approach for a DC micro- 

grid that included dispatchable (micro-turbine) and 

non-dispatchable (PV generator) units, storage sys- 

tem, and controllable/non-controllable loads. It was 

designed to achieve a minimum daily total energy 

cost and it shows that the power provided by the dis- 

patchable unit and the storage system allowed the 

minimization of the daily costs of energy. A novel 

OPF algorithm for islanded microgrid was presented 

in [14], where it provides minimum losses and a sta- 

ble operating point with relevant droop parameters 

used to regulate the primary voltage and frequency. 

Shen et al. [15] presented an energy management 

scheme containing battery storage, diesel generators, 

PV, and wind. As a result, the proposed energy man- 
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agement system is effective in engineering practice 

and beneficial for both the microgrid and the cus- 

tomers. Hassanzadehfard et al. [16] employed bat- 

tery banks as long-term storage and ultra-capacitors 

as short-term storage to control the frequency in a 

microgrid. The simulation results showed that con- 

sidering interruptible loads for the microgrid results 

in cost reduction for the microgrid. 

The development of EVs technology has a signifi- 

cant impact on microgrid operations. Yu et al. in [17] 

analyzed a model to find the effect of EV technol- ogy 

on-demand response mobility. Numerical results 

show that EVs mobility of symmetrical EV fleet is 

able to achieve synchronous stability of network and 

balance the power demand among different districts. 

Moreover, Laureri et al. [18] presented an optimiza- 

tion technique to integrate the EVs into the smart 

grids. The results prove that the integration of elec- 

tric vehicles in the smart grids can help in sustain- ing 

the grid processes when parked and so playing in 

costs minimization. Paterakis et al. [19] developed an 

optimization technique to minimize the en- ergy 

procurement costs of a smart household. Co- 

ordination strategy was proposed in order to satisfy 

the transformer capacity limits while promoting its 

economically fair usage by the households. Lin et al. 

[20] utilized an active power limitation strategy to 

reduce PV power injection during peak solar irradia- 

tion to avoid deviations in voltage. The results show 

that the control for PV power rejection increases the 

installation capacity of a PV system to make full use 

of solar energy resources and to maximize the net 

present value of a PV system investment. More- over, 

a study was conducted in [21] to find the opti- mal 

design of a PV/Battery hybrid system regarding PV 

modules’ numbers, the PV module’s tilt, batter- ies 

numbers, and capacities. Results show that the choice 

of installation place and of the system type can 

significantly affect the optimization results sig- 

nificantly. In particular, the optimum PV module tilt 

angle value changes according to electrical energy 

demand of the domestic utility. In [22], an optimiza- 

tion of the power flow of the PV system connected to 

the grid was presented. It was performed by calculat- 

ing the root of the active and reactive power equation 

using Newton’s Raphson method. Simulation results 

have shown the maximum value of the active power 

system at 1000 W/m2 irradiation was 408 W, as the 

reactive power is needed only 11.82 Var.  In [23],  an 

application for optimization of the energy flows in 

smart power systems consisting of electric vehi- cles 

(EV), distributed energy sources (DER), flexible 

loads, and bidirectional storage is proposed, as well as 

an optimization model for energy distribution be- 

tween electric vehicles, electric storage devices, and 

photovoltaic generators. A nonlinear optimization 

problem with linear constraints for optimizing the 

power flows in the system is defined and solved. A 

multi-objective problem is determined to satisfy PV 

production criteria and maximize the power flow to 

the EVs. An algorithm for finding the optimal so- 

lution to the multi-objective optimization problem is 

also proposed. The approach is beneficial for energy 

flow control and analysis of DER behavior. The algo- 

rithm proposed for solving the multi-objective prob- 

lem is applicable when storage and PV generation 

units are used in the DER system. 

Rigo-Mariani et al. [3] investigated different 

procedures for the optimal power dispatching of a 

grid- connected prosumer with energy storage 

consisting of a high-speed flywheel. According to the 

paper, optimal off-line scheduling for the day ahead 

aims to minimize the cost with regard to the daily en- 

ergy rates and consider the forecasts for both con- 

sumption and production. That dispatching is per- 

formed using global optimization procedures based on 

a trust-region method or a niching genetic algo- rithm. 

Another approach developed by the authors in [3] is 

using step-by-step optimization and exploit- ing an 

original self-adaptive dynamic programming strategy. 

Kim and Lavrova [24] used an advanced op- 

timization method to present optimal power flow and 

energy-sharing among smart buildings. The authors 

claimed that this method could improve the smart 

grid’s optimal power flow and energy-sharing stabil- 

ity among smart buildings and enhance energy dissi- 

pation balance to reach stability among many smart 

buildings in the smart grid. 

Ke et al. [25] presented a new probabilistic OPF 

(POPF) model with chance constraints that reflect the 

uncertainties of wind power generation (WPG). The 

results show the satisfactory accuracy of the PLF 
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(Probabilistic Load Flow) method, and the effective- 

ness of the proposed P-OPF model. In [26], a prob- 

abilistic AC OPF (POPF) was presented, consider- 

ing the load variation, stochastic wind behavior, and 

variable line’s thermal rating. It was observed that a 

reduction on the mean cost and also on the probabil- 

ity of reaching higher generation costs was obtained 

when dynamic limits where used. An optimization 

system to calculate the optimal operation of a system 

comprising electric vehicles and offshore wind farms 

connected to the grid through an HVDC link was pre- 

sented in [27]. It has been shown that the uncertainty 

associated with availability of power from wind farm 

and PEVs affects the overall cost of operation of sys- 

tem. Lin and Lin [28] proposed a risk-limiting opti- 

mal power flow (RLOPF) problem for systems with 

high wind power penetration; the aim was to address 

the issue of possibly violating the security constraints 

in power systems due to the instability of wind power 

generations. 

 

3. Optimal Power Flow 

3.1. OPF of Conventional Power Grid 

Load flow, also known as a power flow, is a net- 

work solution that displays currents, voltages, and 

real and reactive power flows at each bus and lines 

in the power system. The calculation of power flow 

necessitates the solution of non-linear equations. It 

can calculate the transmission system’s electrical re- 

sponse to a specific set of loads and generator power 

outputs. Carpentier presented Optimal Power Flow 

in 1962 [4]. The OPF is typically a non-linear and 

non-convex problem with Objective Function that 

must be optimized (maximized or minimized), a set 

of equality and inequality constraints that must be 

satisfied, and a problem-solving method. Specif- 

ically, OPF optimizes a 

given Objective Function controlling power flow 

throughout an electrical sys- tem without violating 

power flow constraints or oper- ational limits [4]. In 

other words, each power plant’s actual and reactive 

power should be scheduled so that the total operating 

cost is kept to a minimum. Thus, it can help grid 

operators address various challenges in grid 

planning, operation, and control. OPF can also be 

used to determine prices on the day-ahead market 

[29]. Some of the extended OPF versions are 

illustrated below [4]: 

SCOPF: It selects the optimal control settings for 

the base system to minimize the objective function 

while ensuring that no violations occur. 

DC OPF: The reactive power and transmission 

losses are not taken into account. 

AC OPF: It has to do with the AC grid and is 

based on the system’s natural PF characteristics. As 

a result, the outputs of this type of OPF are more 

precise. 

Mixed AC/DC OPF: it is related to the OPF in 

both AC and DC grids. 

OPF has been solved using a variety of con- 

ventional optimization methods such as Linear 

Programming method, Non-linear Programming 

method, Quadratic Programming method, Newton’s 

method, and Interior Point method [30]. However, all 

of these methods have their own set of benefits and 

drawbacks which will be discussed further. OPF has 

been solved using a variety of conventional 

optimization methods such as Linear Programming 

method, Non-linear Programming method, 

Quadratic Programming method, Newton’s method, 

and Interior Point method [30]. However, all of these 

methods have their own set of benefits and 

drawbacks which will be discussed further.  

3.2. OPF Problem Formulation 

• The following is a description of a general 

minimization problem: 

• Minimize: f(x,u) (the objective function) 

where f(x,u) is the objective function. 

• Subject to: hi(x,u) = 0, i = 1,2,3,…. m 

(equality constraints) where hi(x,u) is set of equality 

constraints. 

• gi(x,u) ≤ 0, j =1,2,3, ….  n (inequality 

constraints) where gi(x,u) is set of inequality 

constraints, u represents a set of controllable and x 

represents dependent variables. 

 

 

3.3. Objective function 

These objective functions vary from fuel cost 

generation, active and reactive power transmission 

loss, reactive power reserve margin, security margin 

index, and emission environmental index [31].  
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3.3.1. Minimization of Generation Fuel 

Cost 

The key objective of the OPF solution is to reduce 

the system's total operating costs. When there is a 

light load, the cheapest generators are always 

chosen to run first. More expensive generators will 

be brought in as the load increases. As a result, the 

operational cost plays a critical part in the OPF 

solution. The amount of fuel or input to a generator 

is usually measured in British thermal units per hour 

(Btu/hr) and the output in megawatts (MW) [30]. 

In all practical cases, the cost of generator i can 

be shown as a function of real power generation, 

Ci = [ai + (bi Pi) + (ci Pi2)] * fuel cost                          

(3.1) 

which is expressed in expressed in $/hr 

Where Pi is the real power output of generator i, 

and ai, bi, ci are the cost coefficients. 

The incremental cost can be obtained from the 

derivative of Ci with respect to Pi, 

 dCi/dPi = (bi +2ci Pi)* fuel cost                                  

(3.2)  

which is expressed in $/MWhr. 

3.3.2. Minimization of Active Power 

Transmission Loss 

The OPF problem goal is to minimize the power 

loss. The formulation of the real power loss can be 

represented by [31]: 

Minimizing PLoss = ΣPi = ΣPgi – ΣPdi, i = 1, 

……., Nb (3.3) 

 

where PLoss is the total I2R loss in the 

transmission lines and transformers of the network. 

3.3.3. Minimization of Reactive Power 

Transmission Loss 

The total VAR loss is minimized as per the 

following equation [31]: 

Minimizing QLoss = ΣQgi – ΣQdi, i = 1, …., Nb        

(3.4) 

3.5     Control and Dependent Variables 

There are two relevant variables in an 

optimization problem: independent/control 

variables and dependent/state ones. Firstly, the 

optimal value must be determined for control 

variables to help minimize the objective function, 

and then, based on it, state variables should be 

calculated [4]. 

In the OPF problem, control variables may include 

active power generation of all generator buses except 

slack bus, the voltage of all generator buses, 

transformers tap ratio, reactive power injection of 

shunt capacitor banks, etc. Moreover, dependent 

variables may also include an active power output of 

the slack bus, voltage angles of all buses excluding 

the slack bus, load bus voltages, reactive power 

generation of generators. It should be noted that the 

number of control variables determines the solution 

space. In fact, a problem with n-control variables 

results in an n-dimensional solution space [4]. The 

classification of power system buses is shown in 

Table 3.1 [31]. 

Table – 3.1: Classification of Power System 

Buses. 

 

3.4. Equality constraints 

Both the physicality of the power system and the 

required voltage set points are reflected in the OPF's 

equality constraints. The power system physics is 

enforced by power flow equations that require that 

actual and reactive power injection for each bus 

amount to zero [30].  

This can be attained by the following analysis: 

Pi = PLoad + PLoss       (3.5) 

Qi = QLoad + QLoss    (3.6) 

where Pi and Qi are the active and reactive power 

outputs respectively. 

             PLoad and QLoad are the active and 

reactive load power respectively.  

             PLoss and QLoss are the active and 

reactive power loss respectively. 

The power flow equations of the network can be 

given as: 

G(V,δ) = 0 (3.7) 

where 
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G(V,δ) = Pi(V,δ) - Pinet, Qi(V,δ) – Qinet, 

Pm(V,δ) - Pmnet (3.8) 

where Pi and Qi are the calculated real and 

reactive power at PQ bus respectively  

           Pinet and Qinet are the specified real and 

reactive power for PQ bus respectively  

           V and δ are the magnitude and phase angle 

of voltage at different buses respectively 

 

3.5. Inequality constraints 

Components and equipment in the power system 

have operational limitations created to ensure 

system security and minimize the required objective 

function [30]. 

Inequality constraints: 

Pgimin ≤ Pgi ≤ Pgimax                           (3.9) 

Qgimin ≤ Qgi ≤ Qgimax                  (3.10) 

ΣPgi – PD – PLoss = 0                (3.11) 

where Pgi is the amount of generation in MW at 

generator i. 

           Qgi is the amount of generation in MVAR 

at generator i. 

 

The inequality constraints on voltage magnitude 

V of each PQ bus 

Vi min ≤ Vi ≤ Vi max                   (3.12) 

where Vi min and Vi max are the minimum and 

maximum values of voltages at bus i. 

The inequality constraints on phase angle δ of 

voltages at all buses i 

δimin ≤ δi ≤ δimax                         (3.13) 

where δimin and δimax are the minimum and 

maximum values of phase angle at bus i. 

 

For a typical Microgrid system, the basic 

components are given in Table 3.2 [12]: 

 

 

Table - 3.2 Typical Microgrid components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where the PCC corresponds to the “slack” bus. It is 

always indexed as bus 1. 

 

3.6. Conventional Vs Recent Optimization 

Methods for OPF 

The Conventional methods are based on linear 

Objective Functions that apply sensitivity analysis and 

gradient-based optimization algorithms. The 

conventional optimization methods are illustrated 

below [32]: 

 

3.6.1. Linear Programming method 

LP method is one of the fully developed methods now 

in common use. It easily handles inequality 

constraints. Non-linear objective functions and 

constraints are handled by linearization [33]. LP 

method is used for linearizing the problems of non-

linear system optimization; it is reliable. It has a good 

convergence feature, but the main shortcoming is that 

errors may occur due to digital computer rounding, 

especially under constraints.  

3.6.2. Non-Linear Programming method 

NLP is a process of solving an optimization problem 

where the constraints and the OF are non-linear. It 

helps to find the best solution to a problem using 

constraints that are not linear. The non-linear method 

(NLP) is more precise than the linear method, where 

non-linear objective functions and constraints can be 

applied. The NLP techniques use the Lagrange 

multiplier to use the reduced gradient method. The 

significance of this method is that it can be applied in a 

large-scale system, whereas the disadvantages are that 

some system components are not taken into 

consideration [32]. 
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3.6.3. Quadratic Programming method 

A particular nonlinear programming approach can be 

seen in quadratic programming (QP), where the 

objective function is quadratic, and the constraints are 

linear. The determination of gradient steps is not 

necessary for this method. The solution that has been 

obtained using the QP Method is more accurate 

compared to the previous methods. In addition, it has 

fast convergence characteristics [32].  

 

3.6.4. Newton’s method 

The Newton Method is commonly used in power flow 

problems by applying second-order partial derivatives 

to create the Lagrangian. It is a high-speed 

convergence method, but it may give problems with 

inequality constraints. It was proved that Newton-

Raphson converged in many cases. Moreover, most 

Newton-Raphson power flow problems converge in 

less than ten iterations. The disadvantages are that the 

Newton-Raphson method requires high computer 

storage and computation time, and it is very much 

sensitive to the selection of initial conditions [33]. 

 

3.6.5. Interior Point method 

IP method is one of the fully developed and widely 

used methods for OPF. The IP method is generally 

used for large problems to solve the optimal power 

problem [32]. However, the results achieved by IP 

results are better and require fewer iterations than LP. 

It easily handles inequality constraints [33]. 

The conventional methods are not always appropriate 

for optimizing the power flow since the optimal power 

flow is a non-linear (non-convex) problem. Therefore, 

new optimization methods are introduced to solve the 

OPF. The advantages of these recent methods are the 

following [32]: 

1. They can be applied in small and large scale 

systems 

2. It has a high reliability  

3. They converge rapidly compared to the 

conventional methods. 

 

The recent optimization methods can be classified as 

follows [32]: 

• Swarm and Bio-inspired Optimization 

Techniques 

The natural and bio-inspired algorithm is an emerging 

approach based on the inspiration of the moving and 

looking behavior of animals or birds for food sources.  

• Human-Inspired Optimization Techniques 

Various techniques of optimization simulate human 

behavior, particularly when it comes to thinking or 

making decisions. 

• Physics-Inspired Optimization Techniques 

Algorithms based on physics are conceptualized in 

space through physics laws or natural phenomena. 

• Evolutionary-Inspired Optimization 

Techniques 

Evolutionary optimization algorithms come from 

natural selection mechanics and genetics or living 

bodies or animals. 

• Hybrid Optimization Techniques 

Several algorithms have been proposed for hybrid 

optimization to gain advantages of multiple techniques 

and obtain better results than single techniques. 

• Artificial Neural Network (ANN) and Fuzzy 

Logic Approach 

Artificial neural networks (ANNs) are computational 

methods that emulate the operation of biological neural 

networks. At the same time, the fuzzy set theory is a 

natural and appropriate tool for inaccurate relations. 

4. Networked Microgrid Test System 

A Microgrid can connect with the main grid by a DG 

control entity to serve local loads. The balance between 

the generation and load must be kept under all 

operating conditions to keep the frequency and voltage 

of MGs within operating limits. These DGs may be 

dispatchable or non-dispatchable. For example, the 

power generation from PV panels and wind turbines is 

usually non-dispatchable. In contrast, the power output 

from the microturbines, fuel cells, combined heat and 

power (CHP), and diesel generators are fully 

dispatchable. The grid, which serves as the MG's 

 

slack bus, handles this balance in grid-connected mode. 

While in an islanded mode, dispatchable DG must have 

sufficient capacity to balance load and generation and 

avoid load shedding.  

Figure 4.1 shows the electrical single-line diagram of 

the test system with comprehensive buses, loads, and 

generation. A three-digit number is used to identify 

each bus in the system. All lines, including the tie lines, 

are underground cables. Table 4.1 shows more details 

on the four microgrids [34]. 

The first bus of each microgrid (101, 201, 301, and 

401) serves as the slack bus of that microgrid, and its 

equipped with two or three units of conventional 
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Synchronous Generators to allow the microgrid to 

function effectively in isolated mode, with load 

balancing and reactive power supported. While in 

grid-connected mode, the slack bus of microgrid 1 

(101) is the slack bus on the complete system [34]. 

Load and generation balance is performed through this 

bus.  

As shown in Table 4.1, microgrid 1 consists of 6 

buses, 11 underground cables, and three standby 

Synchronous Generators, each of 5000 kVA 

connected to bus 101. Moreover, 3 PV panels are 

installed at buses 102, 103, and 104. microgrid 2 

consists of 9 buses, eight underground cables, and 

three standby Synchronous Generators at bus 201. 

Additionally, 3 PV panels (at buses 202, 203, and 204) 

and 2 Wind Turbines (at buses 206 and 209) are 

always available to generate power to the network. 

microgrid 3 has 18 buses and 17 underground cables. 

Bus 301 has three standby Synchronous Generators 

and 6 PV panels (at buses 303, 304, 305, 306, 307, and 

315) and 2 Wind Turbines (at buses 314 and 317). 

Finally, microgrid 4 has seven buses and eight 

underground cables, 3 PV panels at (at buses 405, 406, 

and 407), and two standby Synchronous Generators 

installed at bus 401. All these standby SGs are of equal 

capacity and have self-starting capability [34].  

The networked microgrid system is designed to 

operate on 11 kV three-phase underground cables. The 

utility feeder is a 33 kV three-phase single circuit 

overhead line. In addition, there are three 20 MVA 

parallel step-down transformers to maintain the 

voltage of 11 kV at bus 101 

 

 
 

Fig - 4.1 Single-line diagram of the Networked 

MGs test system. 

As shown in Figure 4.1, microgrid 1 can share 

power with microgrid 2 through PCC1 and 

microgrid 3 through PCC2. While microgrid 2 can 

share power with microgrid 3 through PCC4 and 

microgrid 4 with PCC3. microgrid 3 and microgrid 4 

can exchange power through PCC5. If a failure 

occurs in microgrid 1, microgrid 2 and 3 can be 

connected to the utility grid directly to ensure the 

continuity of supply. 

Table - 4.1 Details of Microgrids of the test 

system. 

 

 

The line and bus data are necessary to perform out 

an optimal power flow analysis. The data from the 

networked microgrid system lines such as resistance, 

reactance, and cable length is presented in Table 4.2 

[34]. Moreover, Table 4.3 shows the tie-cable data 

between the microgrids [34]. 

 

 

 

 

 

 

Table - 4.2 Line Data of the Networked MG 

System. 
S. 

No. 

From 

Bus 

To 

Bus 

Length 

(km) 

Resistance 

(P.U) 

Reactance 

(P.U) 

1 101 102 3 0.7661 1.18  

2 101 103 2.4 0.7715 0.991 

3 101 104 3 0.7661 1.18 

4 101 105 1.6 0.514 0.6604 

5 101 106 1.6 0.514 0.6604 

6 102 103 2 0.6429 0.825 
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7 102 105 1.5 0.4822 0.619 

8 103 104 2 0.6429 0.825 

9 103 105 1.2 0.3857 0.495 

10 103 106 1.2 0.3857 0.495 

11 104 106 1.5 0.4822 0.619 

12 201 202 1.4 0.4500 0.577 

13 202 203 1.6 0.5143 0.660 

14 202 206 1.5 1.9710 1.338 

15 203 204 2.2 0.7072 0.908 

16 203 207 1.4 1.8396 1.249 

17 204 205 1.8 0.5786 0.743 

18 204 208 1.2 0.3857 0.495 

19 208 209 0.8 1.0512 0.714 

20 301 302 1.2 0.3857 0.495 

21 302 303 1.8 0.5786 0.743 

22 302 309 1.5 0.4822 0.619 

23 302 311 1.4 1.8396 1.249 

24 303 304 1.2 0.3857 0.495 

25 303 313 1.5 1.9710 1.338 

26 304 305 1.4 0.4500 0.577 

27 304 314 1.4 1.8396 1.249 

28 305 306 1.6 0.5143 0.660 

29 305 315 1.4 1.8396 1.249 

30 306 307 1.5 0.4822 0.619 

31 306 317 1.4 1.8396 1.249 

32 307 308 1.5 1.9710 1.338 

33 307 318 1.7 0.5465 0.701 

34 309 310 1.5 0.4822 0.619 

35 311 312 1.2 1.5768 1.071 

36 315 316 1.2 1.5768 1.071 

37 401 402 0.6 0.3148 0.260 

38 401 405 1 0.5247 0.433 

39 401 406 1.8 0.9446 0.780 

40 402 403 2 1.0495 0.867 

41 403 404 0.6 0.3148 0.260 

42 404 407 1 0.5247 0.433 

43 405 406 1.5 0.7871 0.650 

44 406 407 1.5 0.7871 0.650 

 

Table - 4.3 PCC/Tie-cables Data. 

 
 

 

 

A one-year dataset has been provided in this system. 

Table 4.4 provides the load data for the Networked 

Microgrids [34]. Table 4.4 indicates that the overall 

system loads are 30.802 MW and 6.374 MW, 

including critical loads of 6.16 MW and 1.27 MVAR. 

In addition, the table lists three types of buses: 1) Type 

1 bus: Slack bus; 2) Type 2 bus: Generator bus; 3) 

Type 3 bus: Load bus (PQ bus). 

 

Table - 4.4 Load Data of the Networked MG System. 
Bus  
ID 

Bus  
Type 

Total Bus Load  Critical Load Bus 
Load % 

of 
System 

Load 

kW kVAR kW kVAR 
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101 1 0 0 0 0 0 

102 2 2125 336 450 68 6.9 

103 2 3329 1023 650 124 10.81 

104 2 2050 555 200 50 6.66 

105 3 1257 310 200 35 4.08 

106 3 1056 240 200 35 3.43 

201 2 600 100 0 0 1.95 

202 2 1250 487 500 80 4.06 

203 2 1203 410 500 80 3.91 

204 2 1366 443 650 138 4.43 

205 3 764 36 0 0 2.48 

206 2 503 21 0 0 1.63 

207 3 345 11 0 0 1.12 

208 3 629 8 0 0 2.04 

209 2 642 12 100 25 2.08 

301 2 580 150 0 0 1.88 

302 3 650 85 250 50 2.11 

303 2 673 96 0 0 2.18 

304 2 439 135 0 0 1.43 

305 2 600 128 250 50 1.95 

306 2 560 112 0 0 1.82 

307 2 851 145 385 50 2.76 

308 3 420 25 0 0 1.36 

309 3 500 45 0 0 1.62 

310 3 637 33 0 0 2.07 

311 3 788 95 350 83 2.56 

312 3 125 50 0 0 0.41 

313 3 169 20 0 0 0.55 

314 2 200 43 0 0 0.65 

315 2 250 32 125 25 0.81 

316 3 213 12 0 0 0.69 

317 2 133 25 0 0 0.43 

318 3 200 38 0 0 0.65 

401 2 426 80 0 0 1.38 

402 3 318 78 125 20 1.03 

403 3 356 81 125 20 1.16 

404 3 459 88 0 0 1.49 

405 2 820 91 0 0 2.66 

406 2 2500 635 850 150 8.12 

407 2 816 60 250 44 2.65 

Total 
Load 

 30802 6374 6160 1127 100 

 

Base voltage: 11 kV; Specified voltage at all buses: 

1 p.u. 

Table 4.5 presents details of DERs installed at 

different MG locations. Excess power is saved in 

energy storage systems installed with each PV 

system to use the stored energy when the PV solar is 

unavailable. Also, the details of the Synchronous 

Generators are presented in Table 4.6 [34]. 

Table - 4.5 Installed Capacity of PV and WT in MGs. 

 

 
 

Table - 4.6 Standby Synchronous Generators Data in 

MGs 

 

 

 

 

 

 

 

 

 

The Energy Storage Systems are installed at different 

buses, which are Lithium-ion batteries. With 80% of 

DOD. The SoC of batteries is assumed to be 20% of 

their total capacity. The details of the ESS are shown 

in Table 4.7 [34]. 

Table - 4.7 Energy Storage Capacity. 

Location 
(Bua ID) 

Battery 
Storage 
Capacity 

(kWh) 

Peak 
Power 
Supply 
(Kw) 

Network 
Area 

102 3000 2000 MG1 
103 4000 2400 MG1 
104 3000 2000 MG1 
202 4000 1600 MG2 
203 4000 1600 MG2 
204 4000 2400 MG2 
303 3600 2000 MG3 
304 800 400 MG3 
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305 2000 800 MG3 
306 2000 800 MG3 
307 2000 800 MG3 
315 2000 800 MG3 
405 3000 1600 MG4 
406 6000 2400 MG4 
407 3000 1600 MG4 

 

5. OPF in Microgrids using Newton-Raphson 

method 

For the networked microgrids illustrated in the 

previous chapter, an Optimal Power Flow study will 

be performed using Newton-Raphson method. 

 

5.1. Principle of Newton-Raphson method 

A nonlinear equation in a single variable can be 

expressed as: 

f (x) = 0            (5.10) 

For solving this equation, select an initial value x0. 

The difference between the initial value and the final 

solution is Δx. Then x1 = x0 +Δx is the solution of 

nonlinear equation (5.10). That is [35]: 

f (x0 +Δx) = 0                (5.11) 

Expanding the above equation with the Taylor series 

yields [35]: 

f (x0 +Δx) = f (x0) + f ′(x0) Δx + (f ′′(x0)(Δx)2)/2! + 

· · · + (f (n) (x0)(Δx)n)/ n! + · · · = 0  (5.12) 

where f ′(x0), … , f (n) (x0) are the derivatives of the 

function f (x). 

If the difference Δx is very small (meaning that the 

initial value x0 is close to the solution of the 

function), the terms of the second and higher 

derivatives can be neglected. Thus equation (5.12) 

becomes a linear equation as below [35]: 

f (x0 +Δx) = f (x0) + f ′(x0) Δx = 0                         (5.13) 

Then: 

Δx = − f (x0)/f ′(x0)                                                   (5.14) 

The new solution will be: 

x1 = x0 +Δx = x0 − f (x0)/f ′(x0)                                (5.15) 

Since equation (5.13) is an approximate equation, the 

value of Δx is also an approximation. 

Thus the solution x is not a real solution. Further 

iterations are needed. The iteration equation is [35]: 

xk+1 = xk +Δxk = xk − f (xk)/f ′(xk)                                 

(5.16) 

The iteration can be stopped if one of the following 

conditions is met: 

|Δxk|< 𝜀1 or |f (xk)|< 𝜀2          (5.17) 

where 𝜀1, 𝜀2, which are the permitted convergence 

precisions, are small positive numbers. 

The Newton method can also be expanded to a 

nonlinear equation with n variables. 

f1(x1, x2, … , xn)= 0 

f2(x1, x2, … , xn) = 0           

· · · 

fn(x1, x2, … , xn) = 0 

For a given set of initial values x1, x2, … , xn, we 

have the corrected values Δx1,Δx2, … ,Δxn. Then: 

f1(x1 +Δx1, x2 +Δx2, … , xn +Δxn)= 0 

f2(x1 +Δx1, x2 +Δx2, … , xn +Δxn) = 0 

· · · 

fn(x1 +Δx1, x2 +Δx2, … , xn +Δxn) = 0 

Similarly, expanding the above equations and 

neglecting the terms of second and higher derivatives, 

a matrix can be formed to find the solution at kth 

iteration [35]: 

 

 

 

 

 

 

xk+1i = xki +Δxki     i = 1, 2, … , n           (5.18) 

The above two equations can be expressed as  

F(Xk) = −JkΔXk              (5.19) 

X k+1 = Xk +ΔXk             (5.20) 

where J is an n × n matrix called a Jacobian matrix. 

 

5.2 Power Flow Solution  

The complex voltage, real and reactive powers of each 

bus: 

                         

(5.21) 

                      

(5.22) 

                        

(5.23) 

where 𝜃ij = 𝜃i − 𝜃j, 

which is the angle difference between buses i and j. 

For each PV or PQ bus, we have the following real 
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power mismatch equation: 

 

 

(5.24) 

For each 

PQ bus, we also have the following reactive power 

equation 

             

(5.25) 

 

 

 

where Pis, Qis are the calculated bus real and reactive 

power injections, respectively. 

According to the Newton method, the power flow 

equations (5.24) and (5.25) can be expanded into 

Taylor series and the following first-order 

approximation can be obtained [35]: 

 

 

 

                                                         

 

where  

        
The steps for calculation of the Newton-power flow 

solution are shown in the following flowchart: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig - 5.1  FlowChart of Newton-Raphson method. 

 

5.3. Power Flow Results using Newton-Raphson 

method 

After applying the Newton-Raphson method to the 

networked microgrids, the results are shown in the 

following sections: 

 

5.3.1. Using Storage as a load: 

Using the line and bus data provided in the previous 

chapter for the networked microgrids, the power flow 

solution is obtained using the Newton-Raphson 

method with MATLAB computations. This yields the 

results shown in Table 5.1. Note that for more 

accessible dealing with numbers, the three-digit 

numbers for buses from 101 to 407 are described as 1 

to 40 buses. 

 

Table - 5.1 Power Flow Results using Newton-

Raphson – Storage as Load. 

 

(5.26) 

(5.27) 
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In the first case where the storage systems are 
considered as loads, the ESS, which is installed next 
to each PV system, will absorb the generated 
power and store it in the batteries—assuming that 
from 6 A.M to 6 P.M, the energy from the sunlight is 
absorbed by the PV cells in the panel to produce 
electricity. Wind Turbine, the PV system, and the 
synchronous generators units are operating, the 
batteries are charged from the PV system. The 
calculations through MATLAB Software has 
convincing results: 
• A constant voltage for nodes such as 1 and 
7, and a particular variation limit for others. 
• The balance of the system is ensured as the 
loads should be equal to the generated power from 
the sources. As shown in Table 5.1, the load is 
designed to be 54.002 MW, while the generation is 
56.062 MW. 
• The losses are calculated to be 2.065 MW/ 
2.582 MVAR due to cable length, resistance, and 
reactance. 
• The execution time is 1.263629 seconds. 
• The number of iterations is 11. 

• Maximum Power Mismatch = 1.15132e-05. 
 
5.3.2. Using Storage as a source: 
In the second case, from 6 P.M to 6 A.M, the ESS is 
considered to be a source that can generate power 
to maintain system balance and reliability when the 
PV system is not operating while wind turbines and 
synchronous generators units are operating. The 
batteries are discharging with a DOD of 80%. Table 
5.2 illustrates the power flow results when the 
batteries are discharging. 
The following are observed from the power flow 
output: 
A constant voltage for multiple nodes and a certain 
variation limit for others. 
As shown in Table 5.2, the load is designed to be 
30.802 MW, while the generation is 31.697 MW. 
The losses are calculated to be 0.896 MW/1.149 
MVAR due to the cable length, cable resistance, and 
reactance 
The execution time is 1.032611 seconds. 
The number of iterations till convergence is 10. 
Maximum Power Mismatch = 1.98777e-06. 
 
Table - 5.2 Power flow Results using Newton-
Raphson - Storage as Source. 
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6. OPF in Microgrids using Neural-Network 

method 

After applying the Neural-Network method to the 

networked microgrids, the results are shown in the 

following sections: 

 

6.1.  Principle of Neural Network method 

The evolutionary computing of Artificial Intelligence 

is solely entering the world and spreading the idea that 

it is easier and more intelligent than the conventional 

methods in performing complex tasks. The Neural 

Network displays spatial capacities based on human 

logic. 

Neural networks are a subset of machine learning and 

are the heart of deep learning algorithms, also known 

as artificial neural networks(ANNs) or simulated 

neural networks (SNNs). Their name and structure are 

inspired by the human brain, imitating the working 

strategy of the brain using mathematical methods to 

match the biological neuron [36]. 

Neurons are the simplest processing element of an 

ANN. ANNs consist of node layers, including an input 

layer, one or more hidden layers, and an output layer, 

as shown in Figure 6.1 [36]. Each node is linked to 

another and has several elements such as weight, 

activation function, and threshold. The nodes represent 

computational units and need inputs that should be 

processed in neurons to present the output. Weights are 

multiplied with inputs and then added in the summing 

function, then the sum is processed in the activation 

function. The output is then passed via an activation 

function to determine the output. If the output exceeds 

a threshold, the node is activated, and the data is passed 

into the next network layer. This results in the output 

of one node, which becomes the input of the next node. 

This data transmission procedure from one level to the 

next characterizes this neural network as a feedback 

network. The output is generated as shown in Figure 

6.2 and the equations (6.10) and (6.11) [37]. 

Depending on the nature of the NN's system, the hidden 

network layers can be set in numerous ways. When 

weights are generally calibrated on the branched 

hidden layers, a relatively sophisticated approach 

called backpropagation was considered. 

 

 
Fig - 6.1 Neural Network Architecture. 

 
 
Fig - 6.2 Neuron Mathematical Function. 

 

yj = x1·w1 + x2·w2 + x3·w3 + xn·wn             (6.10) 

yj = ∑_i^n▒〖xi · wi〗                   (6.11) 

 

There are a few different forms of learning/training 

based on operation or system in which the neural 

network, the most generally used and known learning 
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approach, is applied [37].  

• Supervised Learning: the NN is fed with 

labeled datasets to find the correct decision at 

the test stage; the more this training/learning 

process, the more the accuracy [37]. 

• Unsupervised Learning: the NN is fed with 

unlabeled datasets (containing only the input 

data). The ANN will be able to categorize the 

data by clustering the data according to the 

distances and finding the patterns [37]. 

• Reinforcement Learning: it is a kind of 

Learning that involves the surrounding 

environment, starting by getting a state, taking 

action to change the state, and sending that 

action to either get a penalty or reward, to learn 

from its experience and reach the goal [37]. 

The steps of how the Neural Network works is shown 

in the following flowchart in Figure 6.3. 

 
 

Fig - 6.1 FlowChart of Neural Network method. 

6.2 Neural Network Training Algorithms  

6.2.1 Feed-Forward Propagation  

The input data is forwarded throughout the network in 

the feed-forward network. Every hidden layer accepts, 

processes, and passes the input data in accordance 

with the activation function. In other words, the 

information moves only in one direction – forward- 

from the input nodes, through the hidden nodes and to 

the output nodes, there are no cycles or loops in the 

network. The feed-forward network helps in forward 

propagation.  

The processing takes place in two steps at each neuron 

in the hidden or output layer: 

a. Preactivation: it is a weighted sum of inputs. 

Based on this aggregated sum and activation 

function, the neuron decides whether to pass 

this information or not. 

b. Activation: the calculated weighted sum of 

inputs passed to the activation function. The 

activation function is a mathematical function 

which adds non-linearity to the network. There 

are four commonly used and popular activation 

functions – sigmoid, hyperbolic tangent (tanh), 

ReLU, and Softmax. 

6.2.2 Backpropagation 

The backpropagation is an efficient algorithm for 

training feedforward neural networks; it computes the 

gradient of the loss function concerning each weight by 

the chain rule, one layer at a time. Then, it iterates 

backward from that last layer and adjusts the weights 

between the input and the neuron to reduce the cost 

function and minimize the loss, as shown in Figure 6.4 

[38]. 

 

 
 

Fig - 6.2 Backpropagation.  

6.2.3 Gradient Descent  

The Gradient Descent is an algorithm for finding a 

local minimum of a differentiable function. It is used in 

machine learning to find the values of a function’s 

parameters/coefficients that minimize a cost function. 

The idea of this algorithm is to take repeated steps in 

the opposite direction of the gradient of a function at 

the current point (direction of the steepest descent). 

While if the steps were taken proportional to the 

positive of the gradient, the local maximum of a 

function would be approached, this is so-called 
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Gradient Ascent as shown in Figure 6.5 [39]. 

 

 
Fig - 6.5 Gradient Descent. 

 

To perform the training phase in MATLAB for the 

optimal power flow problem, the learning algorithm 

used was the Levenberg–Marquardt (LM) 

backpropagation. The Levenberg-Marquardt 

algorithm is designed to work specifically with loss 

functions which take the form of a sum of squared 

errors. It works without computing the exact Hessian 

matrix. Instead, it works with the gradient vector and 

the Jacobian matrix. 

Levenberg-Marquardt is a combination of two other 

methods: The Gradient Descent and Gauss-Newton. 

Both methods are iterative algorithms, which means 

they use a series of calculations to find a solution. The 

gradient descent differs in that at each iteration, the 

solution updates by choosing values that make the 

function value smaller. In other words, the sum of the 

squared errors is reduced by moving toward the 

direction of steepest descent. Whereas, the Gauss-

Newton is more accurate and faster than the gradient 

descent when close to the minimum error [40]. 

 

6.3. Power Flow Results using Neural Network 

method 

To get the power flow results for the Networked 

Microgrids when the storage is either operating as a 

load or as a source using Neural Network, the tool 

which is used in MATLAB is the ‘nntool’ which opens 

the Network/Data manager window, which allows for 

importing, creating, using, and exporting Neural 

Networks and data. 

 

6.3.1 Using Storage as a Load: 

The custom neural network when the batteries are 

charging during the day is shown in Figure 6.6, Input 

(P) which is the input matrix that represents power 

demands and generation from the bus data as shown in 

Table 6.1. 

 
Fig - 6.3 Custom Neural Network – Storage as Load. 

Table - 6.1 Input Matrix - Storage as Load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Target (T) represents the desired output resulted from 

Newton-Raphson method shown in Table 5.1. 

Using Feed forward backpropagation network, and the 

learning was performed according to the Levenberg-

Marquardt algorithm (trainlm).  

The simulation gives the following results: 

Network Regression 
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Fig - 6.7 Training, Validation, and Test 

Regression - Storage as Load. 

 

The Network Regression figure displays the output of 

the network versus the target sets for training, 

validation and testing. To have the best results, the 

regression line should be fit at 45 degrees where all the 

outputs are equal to the targets. As shown in Figure 

6.7, the R value equal to 0.96017, so the fit is 

extremely good as the value is close to ‘1’where it is 

100% precise.  

Neural Network Training Performance 

 

 
Fig - 6.4 Training Performance - Storage as Load. 

 

The performance is calculated using the mean squared 

error. It minimizes the sum of squared errors between 

the network output and the targets according to epochs. 

The MSE is measured on the training, validation and 

testing sets. 

Neural Network Training State 

 
Fig - 6.5 Training State - Storage as Load. 

The Training state represents the current 

progress/status of the training at a specific time while 

training is in progress. 

Output (Y) 

The output matrix of the neural network method: 
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Table - 6.2 Power Flow Results using Neural 

Network – Storage as Load. 

 
 

 

• Number of iterations: 18 iterations 

• Execution time: Less than one second 

• Total Losses: 1.6508 MW/5.5460 Mvar 
 

6.3.2 Using Storage as a Source: 

The custom neural network when the batteries are 

discharging during the night is shown in Figure 6.10, 

Input (P) which is the input matrix that represents 

power demands and generation from the bus data as 

shown in Table 6.3. 

 
Fig - 6.6 Custom Neural Network – Storage as 

Source. 

Table - 6.3 Input Matrix - Storage as Source. 

 
Target (T) represents the desired output resulted from 

Newton-Raphson method shown in Table 5.2. 

Using Feed forward backpropagation network, and the 

learning was performed according to the Levenberg-

Marquardt algorithm (trainlm).  

The simulation gives the following results: 

Network Regression 
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Fig - 6.7 Training, Validation, and Test Regression - 

Storage as Source. 

As shown in Figure 6.11, the R value equal to 0.93546, 

so the fit is extremely good as the value is close to 

‘1’where it is 100% precise.  

Neural Network Training Performance 

 

Fig - 6.8 Training Performance - Storage as Source. 

The performance is also calculated using the mean 

squared error. It minimizes the sum of squared errors 

between the network output and the targets according 

to epochs. The MSE is measured on the training, 

validation and testing sets. 

Neural Network Training State 

 

 

 

 

 

 
Fig - 6.9 Training State - Storage as Source. 

Output (Y) 

The output matrix of the neural network method: 
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Table - 6.4 Power Flow Results using Neural 

Network – Storage as Source. 

Network – Storage as Source. 

 
 

• Number of iterations: 10 iterations 

• Execution time: Less than one second 

• Total Losses: 0.214 MW/3.018 Mvar. 

 

7. Discussion and Conclusion 

7.1 Discussion 

Power flow or load-flow studies are essential for 

planning the future expansion of power systems and 

determining the best operation of existing systems. 

The principal information obtained from the power 

flow study is the magnitude and phase angle of the 

voltage at each bus and the real and reactive power 

flowing in each line. Therefore, it is essential for the 

reliable and efficient operation of electrical networks. 

In this paper, optimal power flow is obtained for a 

networked microgrids system involving loads, 

decentralized sources of renewable energy (Solar PV 

panels and Wind turbines) and batteries as storage unit, 

using a conventional method (Newton Raphson 

method) and compared to a modern method (Neural 

Network method or Artificial Neural Network (ANN)). 

According to the results obtained above from 

MATLAB optimization and deep learning toolbox. The 

efficiency of the two methods is shown in Table 7.1 and 

Table 7.2. 

In the first case where the batteries are operating as 

load, the losses efficiency are described in Table 7.1: 

Table - 7.1 Comparison between NR and NN 

methods - Storage as Load. 

Optimization Method Losses and Efficiency  

Newton-Raphson 

method 

2.065 MW – 96% 

efficiency 

Neural Network method 1.6508 MW – 97% 

efficiency  

 

In the second case where the batteries are operating as 

source, the losses and efficiency are illustrated in Table 

7.2: 

Table - 7.2 Comparison between NR and NN 

methods - Storage as Source. 

Optimization Method Losses and Efficiency  

Newton-Raphson 

method 

0.896 MW – 97.1% 

efficiency  

Neural Network method 0.214 MW – 99.3% 

efficiency  

 

 

 

 

 

 

It is clearly shown that losses when the Neural Network 
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was applied are lower and could produce more 

efficient results than the Newton-Raphson method. 

Also, the execution time is less when the OPF is 

performed using the Neural Network method, even 

though the iterations are more. For the Newton-

Raphson method, the execution time takes more than 

one second in both cases. Still, Neural Network, a 

rapid convergence method, takes less than a second to 

convergence. The regression value is 0.93-0.98, 

approximately equal to 1, indicating that the results are 

good and have high accuracy and precision. According 

to the results obtained from both methods, it is clearly 

shown that the Neural Network method gave more 

accurate results and achieved the balance between 

load and generation to minimize the losses as much as 

possible. In other words, the generated active power 

from each bus was more accurate, and it was sufficient 

to supply the load with minimum losses. Furthermore, 

both methods did almost the same in producing other 

values, such as the bus voltages and angles. 

 

 7.2. Conclusion 

This research focuses on studying the optimal power 

flow using a conventional method (Newton-Raphson) 

and AI method (Neural Network) for a networked MG 

test system. The load flow analysis considered two 

cases, when the storage units are charging from the 

generation sources during the day and when the 

storage units are supplying power at night to 

compensate the power when the PV panels can’t 

generate power. Both methods were performed using 

Optimization and Deep Learning toolboxes in 

MATLAB. The Neural Network method based on AI 

represents more efficient results with minimum losses 

compared to the conventional method. 

In future work, there are various technologies to be 

added to the microgrids architecture such as multiple 

energy storage systems (flywheels, electrolyzer-fuel 

cell), different energy rates related to the cost of the 

grid power depending on the target load (storage 

charge or consumer feeding), integrating the EVs to 

the microgrids which can help in global warming 

concerns and other grid services such as peak shaving 

and load shifting to increase the reliability of the 

system. The networked MG can also be used to 

validate other studies in the extended work, including 

reliability and resiliency analysis, economic dispatch, 

control and stability studies, and protection analysis. 
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