Vol. 1 No. 1 (2024): International Journal for Autism Challenges & Solution
Articles

Nanotechnology - an innovative approach to cope with the distinctive challenges linked with Autism Spectrum Disorder

Published 2024-04-19

Keywords

  • autism spectrum disorder,
  • Diagnosis,
  • Nanotechnology,
  • Nanoparticles

How to Cite

Nanotechnology - an innovative approach to cope with the distinctive challenges linked with Autism Spectrum Disorder. (2024). International Journal for Autism Challenges & Solution, 1(1), 28-38. https://doi.org/10.54878/wys7ea23

Abstract

The brain stands out as the most intricate organ in the human body, governing cognitive, behavioral, and emotional functions. It is susceptible to various diseases, ranging from injuries to cancers and neurodegenerative conditions, making brain disorders a significant cause of disability and mortality. Overcoming challenges such as delivery, specificity, and toxicity has been a persistent issue in developing drugs that enhance brain structure and function, especially those that can traverse the complex barriers surrounding the brain. Nanotechnology represents a groundbreaking approach to address the unique challenges associated with Autism Spectrum Disorder (ASD). One significant challenge in ASD is early and accurate diagnosis. Nanotechnology can contribute to the development of highly sensitive and specific diagnostic tools, enabling the identification of biomarkers associated with ASD at an earlier stage. These nanoscale devices may facilitate a more precise understanding of the underlying biological mechanisms, leading to improved diagnostic capabilities. In terms of intervention, nanotechnology can enhance drug delivery systems, allowing for the more targeted and efficient administration of medications. This targeted drug delivery can potentially mitigate side effects while maximizing the therapeutic impact, addressing some of the challenges in managing the diverse symptoms of ASD. Despite the promising potential of nanotechnology in addressing ASD challenges, it is essential to approach these innovations with ethical considerations, ensuring that the benefits are accessible and equitable for individuals with ASD. Ongoing research and collaboration between experts in nanotechnology and autism can lead to transformative advancements in understanding, diagnosing, and managing ASD. This review delves into the application of nanotechnology in diagnosing and treating ASD and shedding light on the promising role of nanoparticles.

References

  1. Malhotra S, Sahoo S. Rebuilding the brain with psychotherapy. Indian J Psychiatry. 2017 Oct- Dec;59(4):411-419. doi: 10.4103/0019- 5545.217299.
  2. Borumandnia N, Majd HA, Doosti H, Olazadeh K. The trend analysis of neurological disorders as major causes of death and disability according to human development, 1990-2019. Environ Sci Pollut Res Int. 2022;29(10):14348-14354. doi:10.1007/s11356-021-16604-5
  3. Perel P., Roberts I., Sena E. Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ. 2007;334:197–203.
  4. Wang B., Gray G. Concordance of noncarcinogenic endpoints in rodent chemical bioassays. Risk Anal. 2015;35:1154–1166.
  5. Bailey J., Thew M., Balls M. An analysis of the use of animal models in predicting human toxicology and drug safety. Altern Lab Anim 2014;42:189–199
  6. Rabanel, J. M., Piec, P. A., Landri, S., Patten, S. A., and Ramassamy, C. Transport of PEGylated- PLA nanoparticles across a blood-brain barrier model, entry into neuronal cells and in vivo brain bioavailability. J. Control. Release 2020. 328, 679–695. doi: 10.1016/j.jconrel.2020.09.042
  7. Matsuno, J., Kanamaru, T., Arai, K., Tanaka, R., Lee, J. H., Takahashi, R., et al. (2020). Synthesis and characterization of nanoemulsion-mediated core crosslinked nanoparticles, and in vivo pharmacokinetics depending on the structural characteristics. J. Controlled Release 324, 405– 412. doi: 10.1016/j.jconrel.2020.05.035
  8. Li, Y., Hao, L., Liu, F., Yin, L., Yan, S., Zhao, H., et al. 2019. Cell penetrating peptide-modified nanoparticles for tumor targeted imaging and synergistic effect of sonodynamic/HIFU therapyInt. J. Nanomed. 2019 14, 5875–5894. doi: 10.2147/IJN.S212184
  9. Wang, L.; Wang, B.; Wu, C.; Wang, J.; Sun, M. Autism Spectrum Disorder: Neurodevelopmental Risk Factors, Biological Mechanism, and Precision Therapy. Int. J. Mol. Sci. 2023, 24, 1819. https://doi.org/10.3390/ijms24031819 10.
  10. Malwane, M.I.; Nguyen, E.B.; Trejo, S., Jr.; Kim, E.Y.; Cucalon-Calderon, J.R. A Delayed Diagnosis of Autism Spectrum Disorder in the Setting of Complex Attention Deficit Hyperactivity Disorder. Cureus 2022, 14, e258252022.
  11. Yang, T.; Chen, L.; Dai, Y.; Jia, F.; Hao, Y.; Li, L.; Zhang, J.; Wu, L.; Ke, X.; Yi, M.; et al. Vitamin A Status Is More Commonly Associated with Symptoms and Neurodevelopment in Boys with Autism Spectrum Disorders-A Multicenter Study in China. Front. Nutr. 2022, 9, 851980
  12. Kim H, Keifer C, Rodriguez-Seijas C, et al. Quantifying the optimal structure of the autism phenotype: a comprehensive comparison of dimensional, categorical, and hybrid models. J Am Acad Child Adolesc Psychiatry 2019;58:876- 86.e2. [Crossref] [PubMed]
  13. Risch N, Hoffmann TJ, Anderson M, et al. Familial recurrence of autism spectrum disorder: Evaluating genetic and environmental contributions. Am J Psychiatry 2014;171:1206-13
  14. Di Stefano A. Nanotechnology in Targeted Drug Delivery. Int J Mol Sci. 2023 May 3;24(9):8194. doi: 10.3390/ijms24098194.
  15. Lingineni K, Belekar V, Tangadpalliwar SR, Garg P. The role of multidrug resistance protein (MRP- 1) as an active efflux transporter on blood-brain barrier (BBB) permeability. Mol Divers. 2017;21(2):355–65
  16. Poddar KM, Chakraborty A, Banerjee S. Neurodegeneration: diagnosis, prevention, and therapy. Oxidoreductase. United Kingdom: IntechOpen; 2021. [Google Scholar]
  17. Teleanu RI, Preda MD, Niculescu AG, Vladâcenco O, Radu CI, Grumezescu AM, et al. Current strategies to enhance delivery of drugs across the blood–brain barrier. Pharmaceutics. 2022;14(5):987.
  18. Banks WA. From blood–brain barrier to blood– brain interface: New opportunities for CNS drug delivery. Nat Rev Drug Discov. 2016;15(4):275– 92.
  19. Naqvi S, Panghal A, Flora SJS. Nanotechnology: A promising approach for delivery of neuroprotective drugs. Front Neurosci. 2020;14:494. 10.3389/fnins.2020.00494/full
  20. Palant CE, Duffey ME, Mookerjee BK, Ho S, Bentzel CJ. Ca2+ regulation of tight-junction permeability and structure in Necturus gallbladder. Am J Physiol Cell Physiol. 1983;245(3):C203–12. [PubMed] [Google Scholar]
  21. Gonzalez-Mariscal L, Chávez de Ramírez B, Cereijido M. Tight junction formation in cultured epithelial cells (MDCK). J Membr Biol. 1985;86(2):113–25. [PubMed] [Google Scholar]
  22. Barchet TM, Amiji MM. Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert Opin Drug Deliv. 2009;6(3):211–25. [PubMed] [Google Scholar]
  23. Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood-brain barrier with nanoparticles. J Control Release. 2018;270:290–303.
  24. Goyal D, Shuaib S, Mann S, Goyal B. Rationally designed peptides and peptidomimetics as inhibitors of amyloid-β (Aβ) aggregation: Potential therapeutics of Alzheimer’s disease. ACS Comb Sci. 2017;19(2):55–80.
  25. Elmowafy, M.; Shalaby, K.; Elkomy, M.H.; Alsaidan, O.A.; Gomaa, H.A.M.; Abdelgawad, M.A.; Mostafa, E.M. Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. Polymers 2023, 15, 1123. https://doi.org/10.3390/polym15051123
  26. Yusuf, A.; Almotairy, A.R.Z.; Henidi, H.; Alshehri, O.Y.; Aldughaim, M.S. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers 2023, 15, 1596. https://doi.org/10.3390/polym15071596
  27. Mitchell, M.J., Billingsley, M.M., Haley, R.M. et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 20, 101–124 (2021). https://doi.org/10.1038/s41573-020- 0090-8
  28. Zawadzka A, Cieślik M, Adamczyk A. The Role of Maternal Immune Activation in the Pathogenesis of Autism: A Review of the Evidence, Proposed Mechanisms and Implications for Treatment. Int J Mol Sci. 2021;22(21):11516. Published 2021 Oct 26. doi:10.3390/ijms222111516
  29. He X, Xie J, Zhang J, Wang X, Jia X, Yin H, Qiu Z, Yang Z, Chen J, Ji Z, Yu W, Chen M, Xu W,Gao H. Acid-Responsive Dual-Targeted Nanoparticles Encapsulated Aspirin Rescue the Immune Activation and Phenotype in Autism Spectrum Disorder. Adv Sci (Weinh). 2022 May;9(14):e2104286. doi: 10.1002/advs.202104286.
  30. Savaliya R, Shah D, Singh R, et al. Nanotechnology in Disease Diagnostic Techniques. Curr Drug Metab. 2015;16(8):645- 661.
  31. Malik S, Muhammad K, Waheed Y. Emerging Applications of Nanotechnology in Healthcare and Medicine. Molecules. 2023 Sep 14;28(18):6624. doi: 10.3390/molecules28186624.
  32. Xiong J, Chen S, Pang N, Deng X, Yang L, He F, Wu L, Chen C, Yin F, Peng J. Neurological Diseases With Autism Spectrum Disorder: Role of ASD Risk Genes. Front Neurosci. 2019 Apr 11;13:349. doi: 10.3389/fnins.2019.00349.
  33. Waris A, Ali A, Khan AU, et al. Applications of Various Types of Nanomaterials for the Treatment of Neurological Disorders. Nanomaterials (Basel). 2022;12(13):2140. Published 2022 Jun 22. doi:10.3390/nano12132140
  34. Mustafa DA, Burgers PC, Dekker LJ, Charif H, Titulaer MK, Smitt PA, Luider TM, Kros JM. Identification of gliomaneovascularization- related proteins by using MALDI-FTMS and nano-LC fractionation to microdissected tumor vessels. Mol Cell Proteomics. 2007;6:1147-57.
  35. Kabanov AV, Gendelman HE. Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Prog Polym Sci. 2007;32(8-9):1054- 1082. doi: 10.1016/j.progpolymsci.2007.05.014.
  36. Möhring T, Kellmann M, Jürgens M, Schrader M. Top-down identification of endogenous peptides up to 9 kDa in cerebrospinal fluid and brain tissue by nanoelectrospray quadrupole time-of-flight tandem mass spectrometry. J Mass Spectrom. 2005;40(2):214-226. doi:10.1002/jms.741
  37. Jarockyte, G.; Karabanovas, V.; Rotomskis, R.; Mobasheri, A. Multiplexed Nanobiosensors: Current Trends in Early Diagnostics. Sensors 2020, 20, 6890. https://doi.org/10.3390/s20236890
  38. Reisch A, Klymchenko AS. Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging. Small. 2016;12(15):1968- 1992. doi:10.1002/smll.201503396
  39. Wang Y., Zhao Y., Bollas A., Wang Y., Au K.F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 2021;39:1348– 1365. doi: 10.1038/s41587-021-01108-
  40. Mbunge E., Muchemwa B., Batani J. Sensors and healthcare 5.0: Transformative shift in virtual care through emerging digital health technologies. Glob. Health J. 2021;5:169–177. doi: 10.1016/j.glohj.2021.11.008.
  41. Fox K.E., Tran N.L., Nguyen T.A., Nguyen T.T., Tran P.A. Biomaterials in Translational Medicine. Academic Press; Cambridge, MA, USA: 2019. Surface modification of medical devices at nanoscale—Recent development and translational perspectives; pp. 163–189
  42. Xu K, Huang J, Ye Z, Ying Y, Li Y. Recent development of nano-materials used in DNA biosensors. Sensors (Basel). 2009;9(7):5534-57. doi: 10.3390/s90705534..
  43. Chen S.H., Wu V.C.H., Chuang Y.C., Lin C.S. Using oligonucleotide-functionalized Au nanoparticles to rapidly detect foodborne pathogens on a piezoelectric biosensor. J. Microbiol. Meth. 2008;73:7–17.
  44. Sun H., Choy T.S., Zhu D.R., Yam W.C., Fung Y.S. Nano-silver-modified PQC/DNA biosensor for detecting E. coli in environmental water. Biosens. Bioelectron. 2009;24:1405–1410.
  45. Zhang D., Alocilja E.C. Characterization of nanoporous silicon-based DNA biosensor for the detection of Salmonella Enteritidis. IEEE Sens. J. 2008;8:775–780. [Google Scholar]
  46. Xia H., Wang F., Huang Q., Huang J., Chen M., Wang J., Yao C., Chen Q., Cai G., Fu W. Detection of Staphylococcus epidermidis by a quartz crystal microbalance nucleic acid biosensor array using Au nanoparticle signal amplification. Sensors. 2008;8:6453–6470.
  47. Xu, K.; Huang, J.; Ye, Z.; Ying, Y.; Li, Y. Recent Development of Nano-Materials Used in DNA Biosensors. Sensors 2009, 9, 5534-5557. https://doi.org/10.3390/s90705534
  48. Liu CH, Huang S, Cui J, Kim YR, Farrar CT, Moskowitz MA, Rosen BR, Liu PK. MR contrast probes that trace gene transcripts for cerebral ischemia in live animals. FASEB J. 2007c;21:3004–3015
  49. Wolfbeis O.S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015;44:4743–4768. doi: 10.1039/C4CS00392F
  50. Wolfbeis O.S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015;44:4743–4768. doi: 10.1039/C4CS00392F.
  51. Yen, C.; Lin, C.-L.; Chiang, M.-C. Exploring the Frontiers of Neuroimaging: A Review of Recent Advances in Understanding Brain Functioning and Disorders. Life 2023, 13, 1472. https://doi.org/10.3390/life13071472
  52. Farooq, M.S., Tehseen, R., Sabir, M. et al. Detection of autism spectrum disorder (ASD) in children and adults using machine learning. Sci Rep 13, 9605 (2023). https://doi.org/10.1038/s41598-023-35910-1
  53. Ardekani S, Kumar A, Bartzokis G, Sinha U. Exploratory voxel-based analysis of diffusion indices and hemispheric asymmetry in normal aging. Magnetic Resonance Imaging. 2007;25(2):154–167.
  54. Alexander AL, Lee JE, Lazar M, Boudos R, DuBray MB, Oakes TR, et al. Diffusion tensor imaging of the corpus callosum in Autism. Neuroimage. 2007;34(1):61–73.
  55. Al-Arfaj HK, Al-Sharydah AM, AlSuhaibani SS, Alaqeel S, Yousry T. Task-Based and Resting- State Functional MRI in Observing Eloquent Cerebral Areas Personalized for Epilepsy and Surgical Oncology Patients: A Review of the Current Evidence. J Pers Med. 2023 Feb 19;13(2):370. doi: 10.3390/jpm13020370.
  56. Glover GH. Overview of functional magnetic resonance imaging. Neurosurg Clin N Am. 2011 Apr;22(2):133-9, vii. doi: 10.1016/j.nec.2010.11.001
  57. Chen JE, Glover GH. Functional Magnetic Resonance Imaging Methods. Neuropsychol Rev. 2015 Sep;25(3):289-313. doi: 10.1007/s11065- 015-9294-9. Epub 2015 Aug 7. Erratum in: Neuropsychol Rev. 2015 Sep;25(3):314
  58. Flanagan, K.; Saikia, M.J. Consumer-Grade Electroencephalogram and Functional Near- Infrared Spectroscopy Neurofeedback Technologies for Mental Health and Wellbeing. Sensors 2023, 23, 8482. https://doi.org/10.3390/s23208482
  59. Moridian P, Ghassemi N, Jafari M, Salloum-Asfar S, Sadeghi D, Khodatars M, Shoeibi A, Khosravi A, Ling SH, Subasi A, Alizadehsani R, Gorriz JM, Abdulla SA, Acharya UR. Automatic autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: A review. Front Mol Neurosci. 2022 Oct 4;15:999605. doi: 10.3389/fnmol.2022.999605
  60. Alam, M.S.; Rashid, M.M.; Faizabadi, A.R.; Mohd Zaki, H.F.; Alam, T.E.; Ali, M.S.; Gupta, K.D.; Ahsan, M.M. Efficient Deep Learning- Based Data-Centric Approach for Autism Spectrum Disorder Diagnosis from Facial Images Using Explainable AI. Technologies 2023, 11, 115. https://doi.org/10.3390/technologies11050115
  61. O'Donnell LJ, Westin CF. An introduction to diffusion tensor image analysis. Neurosurg Clin N Am. 2011 Apr;22(2):185-96, viii. doi: 10.1016/j.nec.2010.12.004.
  62. Kubicki M, Westin CF, Maier SE, Mamata H, Frumin M, Ersner-Hershfield H, Kikinis R, Jolesz FA, McCarley R, Shenton ME. Diffusion tensor imaging and its application to neuropsychiatric disorders. Harv Rev Psychiatry. 2002 Nov- Dec;10(6):324-36. doi: 10.1080/10673220216231.
  63. Hiremath CS, Sagar KJV, Yamini BK, Girimaji AS, Kumar R, Sravanti SL, Padmanabha H, Vykunta Raju KN, Kishore MT, Jacob P, Saini J, Bharath RD, Seshadri SP, Kumar M. Emerging behavioral and neuroimaging biomarkers for early and accurate characterization of autism spectrum disorders: a systematic review. Transl Psychiatry. 2021 Jan 13;11(1):42. doi: 10.1038/s41398-020-01178-6. PMID: 33441539; PMCID: PMC7806884.
  64. Robins DL, Casagrande K, Barton M, Chen CM, Dumont-Mathieu T, Fein D. Validation of the modified checklist for Autism in toddlers, revised with follow-up (M-CHAT-R/F). Pediatrics. 2014 Jan;133(1):37-45. doi: 10.1542/peds.2013-1813. Epub 2013 Dec 23.
  65. Moulton E, Bradbury K, Barton M, Fein D. Factor Analysis of the Childhood Autism Rating Scale in a Sample of Two Year Olds with an Autism Spectrum Disorder. J Autism Dev Disord. 2019 Jul;49(7):2733-2746. doi: 10.1007/s10803-016- 2936-9.
  66. Hus V, Lord C. The autism diagnostic observation schedule, module 4: revised algorithm and standardized severity scores. J Autism Dev Disord. 2014 Aug;44(8):1996-2012. doi: 10.1007/s10803-014-2080-3.
  67. Hinnebusch AJ, Miller LE, Fein DA. Autism Spectrum Disorders and Low Mental Age: Diagnostic Stability and Developmental Outcomes in Early Childhood. J Autism Dev Disord. 2017 Dec;47(12):3967-3982. doi: 10.1007/s10803-017-3278-y.
  68. Marvin AR, Marvin DJ, Lipkin PH, Law JK. Analysis of Social Communication Questionnaire (SCQ) Screening for Children Less Than Age 4. Curr Dev Disord Rep. 2017;4(4):137-144. doi: 10.1007/s40474-017-0122-1. Epub 2017 Nov 4..
  69. Waris A, Ali A, Khan AU, Asim M, Zamel D, Fatima K, Raziq A, Khan MA, Akbar N, Baset A, Abourehab MAS. Applications of Various Types of Nanomaterials for the Treatment of Neurological Disorders. Nanomaterials (Basel). 2022 Jun 22;12(13):2140. doi: 10.3390/nano12132140.
  70. Samrot, A.V.; Ram Singh, S.P.; Deenadhayalan, R.; Rajesh, V.V.; Padmanaban, S.; Radhakrishnan, K. Nanoparticles, a Double-Edged Sword with Oxidant as Well as Antioxidant Properties—A Review. Oxygen 2022, 2, 591-604. https://doi.org/10.3390/oxygen2040039
  71. Lushchak, O.; Zayachkivska, A.; Vaiserman, A. Metallic Nanoantioxidants as Potential Therapeutics for Type 2 Diabetes: A Hypothetical Background and Translational Perspectives. Oxidative Med. Cell. Longev. 2018, 2018, 1–9
  72. Kumar, H.; Bhardwaj, K.; Nepovimova, E.; Kuča, K.; Dhanjal, D.S.; Bhardwaj, S.; Bhatia, S.K.; Verma, R.; Kumar, D. Antioxidant Functionalized Nanoparticles: A Combat against Oxidative Stress. Nanomaterials 2020, 10, 1334.
  73. Li, C.W.; Li, L.L.; Chen, S.; Zhang, J.X.; Lu, W.L. Antioxidant Nanotherapies for the Treatment of Inflammatory Diseases. Front. Bioeng. Biotechnol. 2020, 8, 200.
  74. Valgimigli, L.; Baschieri, A.; Amorati, R. Antioxidant activity of nanomaterials. J. Mater. Chem. B 2018, 6, 2036–2051.
  75. Oberdick SD, Jordanova KV, Lundstrom JT, Parigi G, Poorman ME, Zabow G, Keenan KE. Iron oxide nanoparticles as positive T1 contrast agents for low-field magnetic resonance imaging at 64 mT. Sci Rep. 2023 Jul 17;13(1):11520. doi: 10.1038/s41598-023-38222-6.
  76. Gaj T, Sirk SJ, Shui SL, Liu J. Genome-Editing Technologies: Principles and Applications. Cold Spring Harb Perspect Biol. 2016 Dec 1;8(12):a023754. doi: 10.1101/cshperspect.a023754.
  77. Kaushik, A., Yndart, A., Atluri, V., Tiwari, S., Tomitaka, A., Gupta, P., et al. (2019). Magnetically guided non-invasive CRISPR- Cas9/gRNA delivery across blood-brain barrier to eradicate latent HIV-1 infection. Sci. Rep. 9:3928. doi: 10.1038/s41598-019-40222-4
  78. Sandhu A, Kumar A, Rawat K, Gautam V, Sharma A, Saha L. Modernising autism spectrum disorder model engineering and treatment via CRISPR- Cas9: A gene reprogramming approach. World J Clin Cases. 2023 May 16;11(14):3114-3127. doi: 10.12998/wjcc.v11.i14.3114.