Vol. 1 No. 1 (2024): International Journal for Autism Challenges & Solution
Articles

The relative usefulness of the identification and analysis of biomarkers for the diagnosis of autism spectrum disorders in early childhood and the implementation of personalized precision medicine

Published 2024-04-19

Keywords

  • Autism Spectrum Disorders,
  • Biomarkers,
  • Personalized precision medicine,
  • GABA,
  • Glutamate,
  • Mitochondrial dysfunction,
  • Gut microbiota
  • ...More
    Less

How to Cite

The relative usefulness of the identification and analysis of biomarkers for the diagnosis of autism spectrum disorders in early childhood and the implementation of personalized precision medicine. (2024). International Journal for Autism Challenges & Solution, 1(1), 51-71. https://doi.org/10.54878/c0yn1911

Abstract

Despite progress towards understanding the etiological mechanisms of autism spectrum disorder (ASD), efficient treatment strategy for the primary clinically presented autistic features remain elusive. Up to the heterogeneity and complex nature of ASD, clinical presentation differ in severity and usually accompanied with multiple comorbidities, including gastrointestinal (GI) problems, sleep disturbances, epilepsy, and attention deficit hyperactivity disorder (ADHD). Discovery of biomarkers of ASD is essential not only for clarifying the clinical features of this disorder but also as an primary diagnostic implement that could help to tailor early interventions. Therefore, this review describes the core areas of ASD biomarker research, including GABAergic/glutamatergic imbalance, mitochondrial dysfunction, hyperserotonemia, and impaired gut microbiota, all of which have demonstrated success in diagnosing ASD and could serve as targets for implementing personalized precision medicine. Additionally, this review includes accomplishment that focus on the importance of precision medicine and the current trials that make use of ASD biomarkers detection.

References

  1. Abruzzo, P.M.; Panisi, C.; Marini, M. The Alteration of Chloride Homeostasis/GABAergic Signaling in Brain Disorders: Could Oxidative Stress Play a Role? Antioxidants 2021, 10, 1316. https://doi.org/10.3390/ antiox10081316
  2. Ahn, Y.; Sabouny, R.; Villa, B.; Yee, N.; Mychasiuk, R.; Uddin, G.; Rho, J.; Shutt, T. Aberrant Mitochondrial Morphology and Function in the BTBR Mouse Model of Autism Is Improved by Two Weeks of Ketogenic Diet. Int. J. Mol. Sci. 2020, 21, 3266.
  3. Alabdali A, Al-Ayadhi L, and El-Ansary A, “Association of social and cognitive impairment and biomarkers in autism spectrum disorders,” Journal of Neuroinflammation, 2014; 11: article 4.
  4. Al-Otaish, H.; Al-Ayadhi, L.; Bjørklund, G.; Chirumbolo, S.; Urbina, M.A.; El-Ansary, A. Relationship between absolute and relative ratios of glutamate, glutamine and GABA and severity of autism spectrum disorder. Metab. Brain Dis. 2018, 33, 843–854. [CrossRef]
  5. Anderson GM, Horne WC, Chatterjee D, et al. The hyperserotonemia of autism. Ann N Y Acad Sci. 1990;600:331–342.
  6. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (5thed.). Arlington, VA (2013). doi: 10.1176/appi.books.9780890425596
  7. Arnold LE, Luna RA, Williams K, Chan J, Parker RA, Wu Q, et al. Probiotics for Gastrointestinal Symptoms and Quality of Life in Autism: A Placebo-Controlled Pilot Trial. Child Adolesc Psychopharmacol (2019) 29:659–69. doi: 10.1089/cap.2018.0156
  8. Ashwood P, Wills S, Van de Water J. The immune response in autism: a new frontier for autism research. J Leukoc Biol. 2006;80:1–15.
  9. Atkinson AJ, Colburn WA, DeGruttola VG, et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.
  10. Azad, M.B.; Konya, T.; Maughan, H.; Guttman, D.S.; Field, C.J.; Chari, R.S.; Sears, M.R.; Becker, A.B.; Scott, J.A.; Kozyrskyj, A.L. Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months. CMAJ 2013, 185, 385–394. [CrossRef] [PubMed]
  11. Bai, Y.; Bai, Y.; Wang, S.; Wu, F.; Wang, D.H.; Chen, J.; Huang, J.; Li, H.; Li, Y.; Wu, S.; et al. Targeted upregulation of uncoupling protein 2 within the basal ganglia output structure ameliorates dyskinesia after severe liver failure. Free Radic. Biol. Med. 2018, 124, 40–50.
  12. Belardo A, Gevi F, Zolla L. The concomitant lower concentrations of vitamins B6, B9 and B12 may cause methylation deficiency in autistic children. J Nutr Biochem. 2019 Aug;70:38-46. doi: 10.1016/j.jnutbio.2019.04.004. Epub 2019 Apr 24. PMID: 31151052
  13. Betancur C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res (2011) 1380:42–77. doi: 10.1016/j.brainres.2010.11.078
  14. Beversdorf DQ, Nordgren RE, Bonab AA, et al. 5-HT2 receptor distribution shown by [18F] setoperone PET in highfunctioning autistic adults. J Neuropsychiatry Clin Neurosci. 2012; 24:191– 197.
  15. Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, et al. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol. (2006) 60:223–35. doi: 10.1002/ana.20899
  16. Bourgeron T. From the genetic architecture to synaptic plasticity in autism spectrum disorder Nat Rev Neurosci (2015) 16(9):551–63. doi:10.1038/ nrn3992
  17. Buxbaum, J.D.; Silverman, J.M.; Smith, C.J.; Greenberg, D.A.; Kilifarski, M.; Reichert, J.; Cook, E.H., Jr.; Fang, Y.; Song, C.Y.; Vitale, R. Association between a GABRB3 polymorphism and autism. Mol. Psychiatry 2002; 7: 311–316.
  18. Cai J, Ding L, Zhang JS, Xue J, Wang LZ. Elevated plasma levels of glutamate in children with autism spectrum disorders. Neuroreport. 2016; 27(4): 272–276.
  19. Chugani DA, Muzic O, Behen M, et al. Developmental changed in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol. 1999; 45:287–295.
  20. Cook EH. Autism: review of neurochemical investigation. Synapse. 1990;6:292–308.
  21. Costanzo V, Chericoni N, Amendola FA, Casula L, Muratori F, Scattoni ML, et al. Early detection of autism spectrum disorders: from retrospective home video studies to prospective “high risk” sibling stiudies. Neurosci Biobehav Rev. 2015;55:627–35.
  22. Cotter, P.D.; Hill, C. Surviving the acid test: Responses of Gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 2003, 67, 429–453.
  23. Coury, D.L.; Ashwood, P.; Fasano, A.; Fuchs, G.; Geraghty, M.; Kaul, A.; Mawe, G.; Patterson, P.; Jones, N.E. Gastrointestinal conditions in children with autism spectrum disorder: Developing a research agenda. Pediatrics 2012, 130 (Suppl. 2), S160–S168. [CrossRef]
  24. Croen LA, Zerbo O, Qian Y, Massolo ML, Rich S, et al. 2015. The health status of adults on the autism spectrum. Autism 19:814–23
  25. Cullingford, T.E.; Eagles, D.A.; Sato, H. The ketogenic diet upregulates expression of the gene encoding the key ketogenic enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in rat brain. Epilepsy Res. 2002, 49, 99– 107.
  26. Cuthbert BN, Insel TR. 2013. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 11:126
  27. Delhey, L.M.; Nur Kilinc, E.; Yin, L.; Slattery, J.C.; Tippett, M.L.; Rose, S.; Bennuri, S.C.; Kahler, S.G.; Damle, S.; Legido, A.; et al. The Effect of Mitochondrial Supplements on Mitochondrial Activity in Children with Autism Spectrum Disorder. J. Clin. Med. 2017, 6, 18
  28. De Angelis, M.; Francavilla, R.; Piccolo, M.; De Giacomo, A.; Gobbetti, M. Autism spectrum disorders and intestinal microbiota. Gut Microbes 2015, 6, 207–213. [CrossRef] [PubMed]
  29. de Magistris L, Familiari V, Pascotto A, et al. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first- degree relatives. J Pediatr Gastroenterol Nutr 2010;51:418-24. 10.1097/MPG.0b013e3181dcc4a5]
  30. Ding, H.T.; Taur, Y.; Walkup, J.T. Gut Microbiota and Autism: Key Concepts and Findings. J. Autism Dev. Disord. 2017, 47, 480–489. [CrossRef] [PubMed] 66.
  31. Dinstein I, Pierce K, Eyler L, Solso S, Malach R, Behrmann M, Courchesne E: Disrupted neural synchronization in toddlers with autism. Neuron 2011;70:1218–1225
  32. Dworzynski K, Ronald A, Bolton P, Happe F. 2012. How different are girls and boys above and below the diagnostic threshold for autism spectrum disorders? J. Am. Acad. Child Adolesc. Psychiatry 51:788–97
  33. El-Ansary A, Bacha AB, Ayahdi LY, “Relationship between chronic lead toxicity and plasma neurotransmitters in autistic patients from Saudi Arabia,” Clinical Biochemistry, 2011; 44 (13): 1116–1120.
  34. El-Ansary AAl-Ayadhi L, “Lipid mediators in plasma of autism spectrum disorders,” Lipids in Health and Disease, 2012; 11, article 160
  35. El-Ansary A, Al-Ayadhi L, “Neuroinflammation in autism spectrum disorders,” Journal of Neuroinflammation, 2012; 9:article 265.
  36. El-Ansary A, Ben Bacha AG, Al-Ayadhi LY, “Proinflammatory and proapoptotic markers in relation to mono and di-cations in plasma of autistic patients from Saudi Arabia,” Journal of Neuroinflammation, 2011; 8: article 142.
  37. Emmanuele V, Lopez LC, Berardo A, Naini A, Tadesse S, Wen B, et al. Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch Neurol 2012;69:978-83.
  38. Emond A, Emmett P, Steer C, Golding J. Feeding symptoms, dietary patterns, and growth in young children with autism spectrum disorders. Pediatrics. 2010;126:337–42.
  39. Esnafoglu E, Cirrik S, Ayyildiz SN, et al. Increased Serum Zonulin Levels as an Intestinal Permeability Marker in Autistic Subjects. JPediatr 2017;188:240-4. 10.1016/j.jpeds.2017.04.004
  40. Estes A, Munson J, Rogers SJ, Greenson J, Winter J, Dawson G. Longterm outcomes of early intervention in 6-year-old children with autism spectrum disorder. J Am Acad Child Adol Psychiatry. (2015) 54:580– 7. doi: 10.1016/j.jaac.2015.04.005
  41. Fatemi S, Realmuto GM, Khan L, Thuras P, Fluoxetine in treatment of adolescent patients with autism: a longitudinal open trial, J. Autism Dev. Disord 28 (1998) 303–7.
  42. Fido A, Al-Saad S. Toxic trace elements in the hair of children with autism. Autism, 9 (2005), pp. 290-298
  43. Fein D, Barton M, Eigsti IM, Kelley E, Naigles L, Schultz RT, et al. Optimal outcome in individuals with a history of autism. J Child Psychol Psychiatr. (2013) 54:195–205. doi: 10.1111/jcpp.12037
  44. Fiorentino M, Sapone A, Senger S, et al. Blood- brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol Autism 2016;7:49. 10.1186/s13229-016-0110-z
  45. Frye, R.E.; Delatorre, R.; Taylor, H.; Slattery, J.; Melnyk, S.; Chowdhury, N.; James, S.J. Redox metabolism abnormalities in autistic children associated with mitochondrial disease. Transl. Psychiatry 2013, 3, e273.
  46. Frye RE, Vassall S, Kaur G, Lewis C, Karim M, Rossignol D. Emerging biomarkers in autism spectrum disorder: a systematic review. Ann Transl Med. 2019;7(23):792. doi:10.21037/atm.2019.11.5
  47. Gabis Lidia V., Gross Raz, Barbaro Josephine. Personalized Precision Medicine in Autism Spectrum-Related Disorders. Frontiers in Neurology. 2021; 12:1301.DOI=10.3389/fneur.2021.730852
  48. Gano LB, Patel M, Rho JM. Ketogenic diets, mitochondria, and neurological diseases. J Lipid Res. (2014) 55:2211–28. doi: 10.1194/jlr.R0 48975
  49. Garon L, Bryson SE, Zwaigenbaum L, Smith IM, Brian J, Roberts W, et al. Temperament and its relationship to autistic symptoms in a high-risk infant sib cohort. J Abnorm Child Psychol. 2009;37:59–78.
  50. Goldberg J, Anderson GM, Zwaigenbaum L, et al. Cortical serotonin type-2 receptor density inparents of children with autism spectrum disorders. J Autism Dev Disord. 2009;39:97–104.
  51. Groves N.J. et al. Adult vitamin D deficiency leads to behavioural and brain neurochemical alterations in C57BL/6J and BALB/c mice. Behavioural brain research, 2013, vol. 241, pp. 120—131. DOI: 10.1016/j.bbr.2012.12.001
  52. Hartman AL, Gasior M, Vining EP, Rogawski MA. The neuropharmacology of the ketogenic diet. Pediatr Neurol. (2007) 36:281–92. doi: 10.1016/j.pediatrneurol.2007.02.008
  53. Helt M, Kelley E, Kinsbourne M, Pandey J, Boorstein H, Herbert M, et al. Can children with autism recover? If so, how? Neuropsychol Rev. (2008) 18:339–66. doi: 10.1007/s11065-008- 9075-9
  54. Hollander E, Soorya L, Chaplin W, Anagnostou E, Taylor BP, Ferretti CJ, Wasserman S, Swanson E, Settipani C, A double-blind placebo-controlled trial of fluoxetine for repetitive behaviors and global severity in adult autism spectrum disorders, Am. J. Psychiatry 169 (2012) 292–9. 10.1176/appi.ajp.2011.10050764.
  55. Hollander E, Uzunova G. Are there new advances in the pharmacotherapy of autism spectrum disorders? World Psychiatry (2017) 16:101–2. doi: 10.1002/wps.20398
  56. Horder, J.; Petrinovic, M.M.; Mendez, M.A.; Bruns, A.; Takumi, T.; Spooren, W.; Barker, G.J.; Künnecke, B.; Murphy, D.G. Glutamate and GABA in autism spectrum disorder—A translational magnetic resonance spectroscopy study in man and rodent models. Transl. Psychiatry 2018, 8, 1–11. [CrossRef]
  57. Hotz VJ, Imbens GW, Mortimer JH. Predicting the efficacy of future training programs using past experience at other locations. Journal of Econometrics. 2005;125:241–70.
  58. Huang Q, Pereira AC, Velthuis H, Wong NML, Ellis CL, Ponteduro FM, Dimitrov M, Kowalewski L, et al. GABAB receptor modulation of visual sensory processing in adults with and without autism spectrum disorder. Sci Transl Med. 2022,(626):eabg7859. doi: 10.1126/scitranslmed.abg7859. Epub 2022 Jan 5. PMID: 34985973.
  59. Hus V, Gotham K, Lord C. 2014. Standardizing ADOS domain scores: separating severity of social affect and restricted and repetitive behaviors. J. Autism Dev. Disord. 44:2400–12
  60. Janik R, Thomason LAM, Stanisz AM, Forsythe P, Bienenstock J, Stanisz GJ. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. Neuroimage. 2016 Jan 15;125:988-995. doi: 10.1016/j.neuroimage.2015.11.018. Epub 2015 Nov 11. PMID: 26577887.
  61. Jiang, S., Xiao, L., Sun, Y., He, M., Gao, C., Zhu, C., Chang, H., Ding, J., Li, W., Wang, Y., Sun, T., Wang, F."The GABAB receptor agonist STX209 reverses the autism like behaviour in an animal model of autism induced by prenatal exposure to valproic acid". Molecular Medicine Reports (2022), 25: 154.
  62. Jones W, Klin A. Attention to eyes is present but in decline in 2–6 month-olds later diagnosed with autism. Nature. 2013;504:427–31.
  63. Kahneman D, Klein G. Conditions for intuitive expertise: A failure to disagree. American Psychologist. 2009;64(6):515–26.
  64. Karlan D, Appel J. More than good intentions: how a new economics is helping to solve global poverty. New York, NY: Dutton: 2011.
  65. Kasy M. Why experimenters might not want to randomize, and what they could do instead. Political Analysis. 2016;24(3):324–338. doi: 10.1093/pan/mpw012.
  66. Kern JK, Geier DA, Sykes LK, Haley BE, Geier MR. The relationship between mercury and autism: a comprehensive review and discussion. J. Trace Elem. Med. Biol., 2016; 37: 8-24.
  67. Kim DY, Davis LM, Sullivan PG, Maalouf M, Simeone TA, van Brederode J, et al. Ketone bodies are protective against oxidative stress in neocortical neurons. J Neurochem. (2007) 101:1316–26. doi: 10.1111/j.1471-4159.2007. 04483.x
  68. Kim DY, Simeone KA, Simeone TA, Pandya JD, Wilke JC, Ahn Y, et al. Ketone bodies mediate antiseizure effects through mitochondrial permeability transition. Ann Neurol. (2015) 78:77–87. doi: 10.1002/ana.24424
  69. Kim, S.A.; Kim, J.H.; Park, M.; Cho, I.H.; Yoo, H.J. Association of GABRB3 polymorphisms with autism spectrum disorders in Korean trios. Neuropsychobiology 2006, 54, 160–165.
  70. Koegel LK, Koegel RL, Ashbaugh K, Bradshaw J. The importance of early identification and intervention for children with or at risk for autism spectrum disorders. Int J Speech Lang Pathol. (2014) 16:50– 6. doi: 10.3109/17549507.2013.861511
  71. Lambrechts DA, de Kinderen RJ, Vles JS, de Louw AJ, Aldenkamp AP, Majoie HJ. A randomized controlled trial of the ketogenic diet in refractory childhood epilepsy. Acta Neurol Scand. (2017) 135:231–9. doi: 10.1111/ane.12592
  72. Laura A. Ajram, Andreia C. Pereira, Alice M.S. Durieux, Hester E. Velthius, Marija M. Petrinovic, Grainne M. McAlonan, The contribution of [1H] magnetic resonance spectroscopy to the study of excitation-inhibition in autism,Progress in Neuro- Psychopharmacology and Biological Psychiatry 2019,89: 236 244.
  73. Lombardo MV, Pierce K, Eyler LT, Barnes CC, Ahrens-Barbeau C: Different functional neural substrates for good and poor language outcome in autism. Neuron 2014;86: 567–597
  74. Luna RA, Savidge TC, Williams KC. The Brain- Gut-Microbiome Axis: What Role Does It Play in Autism Spectrum Disorder? Curr Dev Disord Rep (2016) 3:75–81. doi: 10.1007/s40474-016-0077-7
  75. Mahdavi, M.; Kheirollahi, M.; Riahi, R.; Khorvash, F.; Khorrami, M.; Mirsafaie, M. Meta- analysis of the association between GABA receptor polymorphisms and autism spectrum disorder (ASD). J. Mol. Neurosci. 2018, 65, 1–9.
  76. Makkonen I, Riikonen R, Kokki H, et al. Serotonin and dopamine transporter binding in children with autism determined by SPECT. Dev Med Child Neurol. 2008;50:593–597.
  77. Mahruba, Syeda & Begum, Shelina & Shahjadi, Shorifa & Afroz, Sharmin & Raihan Siddiqi, Umme & Parvin, Jobaida. Serum vitamin B12 and folic acid status in Autism spectrum disorder children. Journal of Bangladesh Society of Physiologist. 2019; 14. 10.3329/jbsp.v14i2.44783.
  78. Marti LF. Dietary interventions in children with autism spectrum disorders - an updated review of the research evidence. Curr Clin Pharmacol. (2014) 9:335–49. doi: 10.2174/15748847113086660074
  79. Matson JL, Cervantes PE. 2014. Commonly studied comorbid psychopathologies among persons with autism spectrum disorder. Res. Dev. Disabil. 35:952–62
  80. Murphy DGM, Daly E, Schmitz N, et al. Cortical serotonin 5-HT2Areceptor binding and social communication in adults with Asperger’s syndrome: an in vivo SPECT study. Am J Psychiatry.2006;163:934–936.
  81. Nomura, M.; Nakajima, I.; Fujita, Y.; Kobayashi, M.; Kimoto, H.; Suzuki, I.; Aso, H. Lactococcus lactis contains only one glutamate decarboxylase gene. Microbiology 1999, 145, 1375–1380.
  82. Onore C, Careaga M, Ashwood P. The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun. 2012;26: 383–392.
  83. Ozonoff S, Iosif AM, Baguio F, Cook IC, Moore Hill M, Hutman T, et al. A prospective study of the emergence of early behavioral signs of autism. J Am Acad Child Adolesc Psychiatry. 2010;49:256–66.
  84. Quinzii CM, Hirano M. Primary and secondary CoQ(10) deficiencies in humans. Biofactors 2011;37:361-5.
  85. Petruzzelli, M. G., Marzulli, L., Margari, F., De Giacomo, A., Gabellone, A., Giannico, O. V., & Margari, L. Vitamin D Deficiency in Autism Spectrum Disorder: A Cross-Sectional Study. Disease markers, 2020, 9292560. https://doi.org/10.1155/2020/9292560
  86. Pierce Karen, Vahid Gazestani, Elizabeth Bacon, Eric Courchesne, Amanda Cheng, Cynthia Carter Barnes, et al. Get SET Early to Identify and Treatment Refer Autism Spectrum Disorder at 1 Year and Discover Factors That Influence Early Diagnosis, The Journal of Pediatrics2021, , 236:179-188
  87. Poling Poling JS, Frye RE, Shoffٴner J, Zimmerman AW (2006) Developmental regression and mitochondrial dysfunction in a child with autism. Journal of Child Neurology. 21: 170-172.
  88. Puts, N.A.; Wodka, E.L.; Harris, A.D.; Crocetti, D.; Tommerdahl, M.; Mostofsky, S.H.; Edden, R.A. Reduced GABA and altered somatosensory function in children with autism spectrum disorder. Autism Res. 2017, 10, 608–619.
  89. Prata D, Mechelli A, Kapur S. Clinically meaningful biomarkers for psychosis: a systematic and quantitative review. Neurosci Biobehav Rev (2014) 45:134–41. doi:10.1016/j.neubiorev.2014.05.010
  90. Reichow B. Overview of meta-analyses on early intensive behavioral intervention for young children with autism spectrum disorders. J Autism Dev Disord. (2012) 42:512–20. doi: 10.1007/s10803-011-1218-9
  91. Richdale AL, Kimberly AS. Sleep problems in autism spectrum disorders: prevalence, nature, & possible biopsychosocial aetiologies. Sleep Med Rev. 2009;13:403–11
  92. Rivera, C.; Voipio, J.; Payne, J.A.; Ruusuvuori, E.; Lahtinen, H.; Lamsa, K.; Pirvola, U.; Saarma, M.; Kaila, K. The K/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 1999, 397, 251–255.
  93. Rojas, D.C.; Singel, D.; Steinmetz, S.; Hepburn, S.; Brown, M.S. Decreased left perisylvian GABA concentration in children with autism and unaffected siblings. Neuroimage 2014, 86, 28–34. [CrossRef]
  94. Rojas DC, Steinmetz S, Hepburn SL, et al. Auditory gamma-band power is related to GABA concentration in autism. Int Meet Autism Res. 2014;14:166.001.
  95. Rose S, Frye RE, Slattery J, et al. Oxidative stress induces mitochondrial dysfunction in a subset of autistic lymphoblastoid cell lines. Transl Psychiatry. 2014;4:e377.
  96. Sacai, H., Sakoori, K., Konno, K. et al. Autism spectrum disorder-like behavior caused by reduced excitatory synaptic transmission in pyramidal neurons of mouse prefrontal cortex. Nat Commun 11, 5140 (2020). https://doi.org/10.1038/s41467-020-18861-3
  97. Sandler, R.H.; Finegold, S.M.; Bolte, E.R.; Buchanan, C.P.; Maxwell, A.P.; Vaisanen, M.L.; Wexler, H.M. Short term beneit from oral vancomycin treatment of regressive-onset autism. J. Child Neurol. 2000, 15, 429–435. [CrossRef] [PubMed]
  98. Santocchi Elisa, Guiducci Letizia, Prosperi Margherita, Calderoni Sara, Gaggini Melania, Apicella Fabio, Tancredi Raffaella, Billeci Lucia, Mastromarino Paola, Grossi Enzo, Gastaldelli Amalia, Morales Maria Aurora, Muratori Filippo. Effects of Probiotic Supplementation on Gastrointestinal, Sensory and Core Symptoms in Autism Spectrum Disorders: A Randomized Controlled Trial. Frontiers in Psychiatry, DOI=10.3389/fpsyt.2020.550593
  99. Schultz, S.T.; Klonoff-Cohen, H.S.; Wingard, D.L.; Akshoomoff, N.A.; Macera, C.A.; Ji, M.; Bacher, C. Breastfeeding, infant formula supplementation and autistic disorder: The results of a parent survey. Int. Breastfeed. 2016, 1, 16.
  100. Sicherman, N., Charite, J., Eyal, G. et al. Clinical signs associated with earlier diagnosis of childrenwith autism Spectrum disorder. BMC Pediatr 2021, 21: 96 https://doi.org/10.1186/s12887-021- 02551-0
  101. Siemann JK, Muller CL, Forsberg CG, Blakely RD, Veenstra-VanderWeele J, Wallace MT. An autism-associated serotonin transporter variant disrupts multisensory processing. Transl Psychiatry (2017) 7:e1067. doi: 10.1038/tp.2017.17
  102. Silverman, J., Pride, M., Hayes, J. et al. GABAB Receptor Agonist R-Baclofen Reverses Social Deficits and Reduces Repetitive Behavior in Two Mouse Models ofAutism. Neuropsychopharmacol 2015, 40: 2228–2239
  103. Siperstein S, Volkmar F. Brief report: parental reporting of regression in children with pervasive developmental disorders. J Autism Dev Disord. 2004;34:731–4
  104. Skalny AV, Simashkova NV, Klyushnik TP, et al. Analysis of hair trace elements in children with autism spectrum disorders and communication disorders. J. Trace Elem. Med. Biol., 2017;177: 215-223.
  105. Spooren W, Lindemann L, Ghosh A, Santarelli L. Synapse dysfunction in autism: a molecular medicine approach to drug discovery in neurodevelopmental disorders. Trends Pharmacol Sci (2012) 33:669–84. doi:10.1016/j. tips.2012.09.004
  106. Sugie Y, Sugie H, Fukuda T, Ito M, Sasada Y, Nakabayashi M, Fukashiro K, Ohzeki T, Clinical efficacy of fluvoxamine and functional polymorphism in a serotonin transporter gene on childhood autism, J. Autism Dev. Disord 35 (2005) 377–85.
  107. Sullivan M, Finelli J, Marvin A, Garrett-Mayer E, Bauman M, Landa R: Response to joint attention in toddlers at risk for autism spectrum disorder: a prospective study. J Autism Dev Disord 2007;37: 37–48.
  108. Sutcliffe JS, Delahanty RJ, Prasad HC, et al. Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors. Am J Hum Genet. 2005; 77:265–279.
  109. Sutera S, Pandey J, Esser EL, Rosenthal MA, Wilson LB, Barton M, et al. Predictors of optimal outcome in toddlers diagnosed with autism spectrum disorders. J Autism Dev Disord. (2007) 37:98–107. doi: 10.1007/s10803-006-0340-6
  110. Testa C, Nuti F, Hayek J et al., “Di-(2-ethylhexyl) phthalate and autism spectrum disorders,” ASN Neuro, 2012; 4(4): pp. 223– 229.
  111. Szatmari P, Chawarska K, Dawson G, Georgiades S, Landa R, et al. 2016. Prospective longitudinal studies of infant siblings of children with autism: lessons learned and future directions. J. Am. Acad. Child Adolesc. Psychiatry 55:179–87
  112. Zwaigenbaum L, Bryson SE, Brian J, Smith IM, RobertsW, et al. 2016. Stability of diagnostic assessment for autism spectrum disorder between 18 and 36 months in a high-risk cohort. Autism Res. 9(7):790– 800
  113. Taylor JL, Dove D, Veenstra-VanderWeele J, Sathe NA, McPheeters ML, Jerome RN, Warren Z, Interventions for Adolescents and Young Adults With Autism Spectrum Disorders, Agency for Healthcare Research and Quality (US), 2012.
  114. Thye MD, Bednarz HM, Herringshaw AJ Sartin EB, Kana RK. The impact of atypical sensory processing on social impairments in autism spectrum disorder. Dev Cognit Neurosci (2018) 29:151–67. doi: 10.1016/j.dcn.2017.04.010
  115. Tinkov AA, Skalnay MG, Simashkova NV, et al. Association between catatonia and levels of hair and serum trace elements and minerals in autism spectrum disorder. Biomed. Pharmacother., 2019 ;109: 174-180.
  116. Toichi M, Kamio Y. Paradoxical autonomic response to mental tasks in autism. J Autism Dev Disord. 2003;33:417–426.
  117. Tomalski P, Csibra G, Johnson MH: Rapid orienting toward face-like stimuli with gazerelevant contrast information. Perception 2009;38:569–578.
  118. Trimboli, P.; Castellana, M.; Bellido, D.; Casanueva, F.F. Confusion in the nomenclature of ketogenic diets blurs evidence. Rev. Endocr. Metab. Disord. 2020, 21, 1–3.
  119. van ’t Hof M, Tisseur C, van Berckelear-Onnes I, et al. Age at autism spectrum disorder diagnosis: A systematic review and meta-analysis from 2012 to 2019. Autism. 2021;25(4):862-873.
  120. van der Heijden ME, Gill JS, Sillitoe RV. Abnormal Cerebellar Development in Autism Spectrum Disorders. Dev Neurosci. 2021;43(3- 4):181-190.
  121. Vinkhuyzen A.A. et al. Gestational vitamin D deficiency and autism-related traits: the Generation R Study. Molecular psychiatry, 2018,vol. 23, no. 2, pp. 240—246. DOI: 10.1038/mp.2016.213
  122. Veenstra-VanderWeele J, Cook EH, King BH, Zarevics P, Cherubini M, Walton-Bowen K, et al. Arbaclofen in Children and Adolescents with Autism Spectrum Disorder: A Randomized, Controlled, Phase 2 Trial. Neuropsychopharmacology (2017) 42:1390–8. doi: 10.1038/npp.2016.237
  123. Wang, Z.; Ding, R.; Wang, J. More severe cases are more easily diagnosed A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 86. https://doi.org/10.3390/nu13010086
  124. Watanabe, M.; Fukuda, A. Development and regulation of chloride homeostasis in the central nervous system. Front. Cell. Neurosci. 2015, 9, 371.
  125. Wen, J., Yang, T., Zhu, J. et al. RETRACTED ARTICLE: Vitamin A deficiency and sleep disturbances related to autism symptoms in children with autism spectrum disorder: a cross- sectional study. BMC Pediatr 2021; 21, 299. https://doi.org/10.1186/s12887-021-02775-0
  126. Werling DM, Geschwind DH. 2013. Sex differences in autism spectrum disorders. Curr. Opin. Neurol. 26:146–53
  127. Williams K, Brignell A, Randall M, Silove N, Hazell P, Selective serotonin reuptake inhibitors (SSRIs) for autism spectrum disorders (ASD), Cochrane Database Syst. Rev (2013) CD004677 10.1002/14651858.CD004677.pub3.
  128. Wolff JJ, Piven J: On the emergence of autism: neuroimaging findings from birth to preschool. Neuropsychiatry 2013;3:209–222.
  129. Yamada, J.; Okabe, A.; Toyoda, H.; Kilb, W.; Luhmann, H.J.; Fukuda, A. Cl uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1. J. Physiol. 2004, 557, 829–841
  130. Yang CJ, Liu CL, Sang B, Zhu XM, Du YJ, “The combined role of serotonin and interleukin-6 as biomarker for autism,” Neuroscience, 2015; 284: 290–296.
  131. Yang, Y.; Tian, J.; Yang, B. Targeting gut microbiome: A novel and potential therapy for autism. Life Sci. 2018, 194, 111–119
  132. Yeo, M.; Patisaul, H.; Liedtke, W. Decoding the language of epigenetics during neural development is key for understanding development as well as developmental neurotoxicity. Epigenetics 2013, 8, 1128–1132
  133. Yip J, Soghomonian JJ, Blatt GJ. Increased GAD67 mRNA expression in cerebellar interneurons in autism: implications for Purkinje cell dysfunction. J Neurosci Res. 2008,86:525– 30.
  134. Yizhar, O.; Fenno, L.E.; Prigge, M.; Schneider, F.; Davidson, T.J.; O’Shea, D.J.; Sohal, V.S.; Goshen, I.; Finkelstein, J.; Paz, J.T.; et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 2011, 477, 171–178.
  135. Zhang QB, Jiang LF, kong LY, Lu YJ, “Serum Brainderived neurotrophic factor levels in Chinese children with autism spectrum disorders: a pilot study,” International Journal of Developmental Neuroscience, 2014; 37: 65–68.
  136. Zhaoqi Dong, Wenbing Chen, Chao Chen, Hongsheng Wang, Wanpeng Cui, Zhibing Tan, Heath Robinson, et al. CUL3 Deficiency Causes Social Deficits and Anxiety-like Behaviors by Impairing Excitation-Inhibition Balance through the Promotion of Cap-Dependent Translation, Neuron 2020, ,105(3): 475- 490.e6,https://doi.org/10.1016/j.neuron.2019.10. 035.
  137. Zecavati N, Spence SJ (2009) Neurometabolic disorders and dysfunction in autism spectrum disorders. Current Neurology and Neuroscience Reports 9: 129-136. 27.
  138. hai Q, Cen S, Jiang J, Zhao J, Zhang H, Chen W. Disturbance of trace element and gut microbiota profiles as indicators of autism spectrum disorder: a pilot study of Chinese children. Environ. Res., 2019;171: 501-509.
  139. Zhao HX, Yin SS, Fan JG, “High plasma neopterin levels in Chinese children with autism spectrum disorders,” International Journal of Developmental Neuroscience, 2015; 41: 92–97.