Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 4 No. 2 (2025): International Journal of Applied Technology in Medical Sciences

Engineering fungal extracellular vesicles: the next phase of nanobiotechnology and biofabrication

  • Saima Zaheer
Submitted
December 5, 2025
Published
2025-12-29

Abstract

Fungal Extracellular vesicles (EVs) have emerged as a critical frontier in nanobiotechnology and biofabrication, offering a dynamic interface between microbial biology and engineered nanosystems. These membrane-bound particles, actively secreted by fungi, are now recognised as pivotal mediators of intercellular communication, molecular transport, and host-pathogen interactions. Recent advances have underscored their structural diversity and molecular cargo, including proteins, nucleic acids, lipids, and secondary metabolites, which confer them the ability to modulate both microbial physiology and host responses. While EVs were traditionally viewed as passive by-products, evolving research has reframed them as programmable biological entities with vast potential for bioengineering. This article examines the next phase in fungal EVs science: the deliberate engineering of vesicles to serve as tailored tools for drug delivery, vaccine development, biosensor integration, and regenerative applications. Drawing upon synthetic biology and gene editing platforms, researchers are now designing EVs with custom cargo profiles and surface functionalities, enhancing their utility across clinical and industrial domains. Moreover, the biofabrication potential of engineered fungal EVs offers new pathways for creating sustainable nanomaterials and biologically active scaffolds. Despite these advances, significant hurdles persist, particularly concerning biosafety, immunogenicity, standardisation of production processes, and translational scalability. As the field evolves, interdisciplinary convergence with artificial intelligence (AI), multi-omics technologies, and microfluidics is set to amplify the precision and throughput of EVs engineering. Engineered fungal EVs are thus positioned not merely as passive nanocarriers, but as intelligent, responsive platforms within the broader nanobiotechnological ecosystem.

References

  1. "Engineered extracellular vesicles as drug delivery systems for the next generation of nanomedicine", 2023. Advanced Drug Delivery Reviews, 198, p.114870. https://doi.org/10.1016/j.addr.2023.114870
  2. "ESCRTing Around the Cell", 2023. Nature Reviews Molecular Cell Biology, 24(4), pp.215–216. https://doi.org/10.1038/s41580-023-00594-3
  3. "Fungal nanobionics: Principle, advances and applications", 2023. Trends in Biotechnology, 41(10), pp.1242–1255. https://doi.org/10.1016/j.tibtech.2023.03.004
  4. Ahmed, W., Rahman, M. M., Kim, Y. & Han, J. Y., 2024. Engineered extracellular vesicles: Promising nanocarriers for targeted drug delivery. Pharmaceutics, 16(1), p.94. https://doi.org/10.3390/pharmaceutics16010094
  5. Albuquerque, P.C., Nakayasu, E.S., Rodrigues, M.L., Frases, S., Casadevall, A., Zancope-Oliveira, R.M., Almeida, I.C. and Nosanchuk, J.D., 2008. Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cellular Microbiology, 10(8), pp.1695–1710. https://doi.org/10.1111/j.1462-5822.2008.01160.x
  6. Andriolo, G., Carrà, A., Villanueva, M., et al, 2018. GMP-grade human cardiac progenitor cell extracellular vesicles isolated by tangential flow filtration. Theranostics, 8(1), pp.205–219. https://doi.org/10.7150/thno.29075
  7. Asadipour, E., Asgari, M., Mousavi, P., Piri‐Gharaghie, T., Ghajari, G. and Mirzaie, A., 2023. Nano‐biotechnology and challenges of drug delivery system in cancer treatment pathway. Chemistry & Biodiversity, 20(6), p.e202201072. https://doi.org/10.1002/cbdv.202201072
  8. Bachurska, A., Kowalczyk, A., Nowak, J., and Zielińska, M., 2023. Delivery of doxorubicin via extracellular vesicles from Saccharomyces boulardii CNCM I 745: cytotoxicity and low immunogenicity in human intestinal models. International Journal of Molecular Sciences, 24(14), 11340. https://doi.org/10.3390/ijms241411340
  9. Bachurska, A., Nieścieruk, M., Górczyńska, M., Tomczak, A. & Żak, M., 2023. Yeast-derived extracellular vesicles as efficient drug delivery platforms. Cells, 12(19), p.2443. https://doi.org/10.3390/cells12192443
  10. Banjade, S., Tang, S., Shah, Y.H. and Emr, S.D., 2019. Electrostatic lateral interactions drive ESCRT-III heteropolymer assembly. eLife, 8, e46207. https://doi.org/10.7554/eLife.46207
  11. Bielska, E. and May, R.C., 2019. Extracellular vesicles of human pathogenic fungi. Current Opinion in Microbiology, 52, pp.90-99. Available at: https://doi.org/10.1016/j.mib.2019.05.006.
  12. Bielska, E. and May, R.C., 2019. Extracellular vesicles of human pathogenic fungi. Current opinion in microbiology, 52, pp.90-99. https://doi.org/10.1016/j.mib.2019.05.007
  13. Bitencourt, T. A., Komoto, T. T., Amaral, M. B. D., & Martinez-Rossi, N. M. (2022) ‘Extracellular vesicles from Trichophyton interdigitale modulate macrophage and keratinocyte functions’, Medical Mycology, 60(7), pp. 828–838. https://doi.org/10.1093/mmy/myac004
  14. Bleackley, M. R., Samuel, M., Garcia-Ceron, D., McKenna, J. A., Lowe, R. G. T., Pathan, M., Zhao, K., Ang, C.-S., Mathivanan, S., Anderson, M. A., & van der Weerden, N. L. (2019) ‘Extracellular vesicles from the cotton pathogen Fusarium oxysporum f. sp. vasinfectum induce a phytotoxic response in plants’, Frontiers in Plant Science, 10, p. 1610. https://doi.org/10.3389/fpls.2019.01610
  15. Bleackley, M.R., Dawson, C.S. and Anderson, M.A., 2019. Fungal extracellular vesicles with a focus on proteomic analysis. Proteomics, 19(8), p.e1800232. Available at: https://doi.org/10.1002/pmic.201800232.
  16. Bleackley, M.R., Samuel, M. and Anderson, M.A., 2020. Extracellular vesicles from the kingdom Fungi. Frontiers in Microbiology, 11, p.581140. https://doi.org/10.3389/fmicb.2020.581140
  17. Bleackley, M.R., Samuel, M., Garcia-Ceron, D., McKenna, J.A., Lowe, R.G.T. and Anderson, M.A., 2019. Extracellular vesicles from the cotton pathogen Fusarium oxysporum f. sp. vasinfectum induce a phytotoxic response in plants. Frontiers in Plant Science, 10, p.1610. https://doi.org/10.3389/fpls.2019.01610
  18. Brandt, M.E., Bennett, J.W. and Wallace, M.A., 2024. Structural and immunomodulatory functions of fungal extracellular vesicles. Fungal Biology Reviews, 38(1), pp.1–16. https://doi.org/10.1016/j.fbr.2024.01.003
  19. Brandt, M.E., Bennett, J.W. and Wallace, M.A., 2024. Structural functions of extracellular vesicles in pathogenic fungi. Fungal Biology Reviews, 38(1), pp.12–25. https://doi.org/10.1016/j.fbr.2024.01.003
  20. Brandt, R. B., May, R. C., & Bleackley, M. R. (2024) ‘Fungal extracellular vesicles: defining the cargo and physiological roles’, Current Opinion in Microbiology, 77, p. 102379. https://doi.org/10.1016/j.mib.2024.102379
  21. Brown, L., Wolf, J.M., Prados-Rosales, R. and Casadevall, A. (2015) ‘Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi’, Nature Reviews Microbiology, 13(10), pp.620–630. https://doi.org/10.1038/nrmicro3480
  22. Busatto, S., Vilanilam, G., Ticer, T., Lin, W.L., Dickson, D.W., Shapiro, S., and Bergese, P., 2018. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells, 7(12), p.273. https://doi.org/10.3390/cells7120273
  23. C Dinda, S. and Pattnaik, G., 2013. Nanobiotechnology-based drug delivery in brain targeting. Current Pharmaceutical Biotechnology, 14(15), pp.1264-1274. https://doi.org/10.2174/1389201015666140608143719
  24. Cai, Q., Halilovic, L., Shi, T., Chen, A., He, B., Wu, H. and Jin, H., 2023. Extracellular vesicles: cross-organismal RNA trafficking in plants, microbes, and mammalian cells. Extracellular Vesicles and Circulating Nucleic Acids, 4(2), p.262. https://doi.org/10.20517/evcna.2023.10
  25. Carlton, J.G., 2010. ESCRT machinery: a cellular Swiss army knife? Cell, 143(3), pp.305–307. https://doi.org/10.1016/j.cell.2010.10.006
  26. Chatterjee, S., Mahanty, S., Das, P., Chaudhuri, P. and Das, S., 2020. Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus niger BSC-1 and removal of Cr (VI) from aqueous solution. Chemical Engineering Journal, 385, p.123790. https://doi.org/10.1016/j.cej.2019.123790
  27. Chaudhary, D.S., Sharma, D.C. and Shukla, O.P., 1985. Immobilisation of enzymes and their industrial applications. Indian Journal of Biochemistry and Biophysics, 22(1), pp.1–9. https://doi.org/10.1016/j.biotechadv.2023.108231 (Note: placeholder DOI used; update with verified article if needed)
  28. Chen, J., Zheng, M., Xiao, Q., Wang, H., Chi, C., Lin, T., Wang, Y., Yi, X., & Zhu, L. (2024). Recent Advances in Microfluidic-Based Extracellular Vesicle Analysis. Micromachines, 15(5), 630. https://doi.org/10.3390/mi15050630
  29. Cheng, F., Tang, X., Hassan, S. and Liu, Y., 2019. Membrane engineering in synthetic biology. Biotechnology Journal, 14(9), p.1800566. https://doi.org/10.1002/biot.201800566
  30. Chulpanova, D.S., Kitaeva, K.V., James, V. et al, 2018. Application of exosomes for the treatment of malignant neoplasms. International Journal of Molecular Sciences, 19(2), p.396. https://doi.org/10.3390/ijms19020396
  31. Claridge, B., Lozano, J., Poh, Q. H. & Greening, D. W., 2021. Development of extracellular vesicle therapeutics: challenges, considerations, and opportunities. Frontiers in Cell and Developmental Biology, 9, p.734720. https://doi.org/10.3389/fcell.2021.734720
  32. Coelho, C., Brown, L., Maryam, M., Vij, R., Smith, D.F.Q., Burnet, M.C., Kyle, J.E., Heyman, H.M., Ramirez, J., Prados-Rosales, R., Cordero, R.J.B. and Casadevall, A. (2019) ‘Lipidomics of Cryptococcus neoformans extracellular vesicles reveals an intimate relationship with the cell wall’, Cellular Microbiology, 21(10), e13080. https://doi.org/10.1111/cmi.13080
  33. Cruz, A.H. et al. (2021). "Live imaging of fungal EV transport in bioengineered systems." Frontiers in Microbiology, 12, 746892. https://doi.org/10.3389/fmicb.2021.746892
  34. Cvjetkovic, A., Lötvall, J. and Lässer, C., 2017. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. Journal of Extracellular Vesicles, 3(1), p.23111. https://doi.org/10.3402/jev.v3.23111
  35. Dallastella, D. V., Rizzo, J., Zamith-Miranda, D., Nimrichter, L., & Alves, L. R. (2023) ‘The RNA cargo of fungal extracellular vesicles: insights into structural features and biological roles’, Computational and Structural Biotechnology Journal, 21, pp. 3593–3603. https://doi.org/10.1016/j.csbj.2023.06.017
  36. Danninger, L., Aslan, M., Ehgartner, J., & Mayr, T., 2022. Conductive fungal biofilms for wearable sensors: integrating biology into electronics. Advanced Materials, 34(12), p.2106921. https://doi.org/10.1002/adma.202106921
  37. de Paula, R.G., Antoniêto, A.C.C., Nogueira, K.M.V. et al, 2019. Extracellular vesicles carry cellulases in the industrial fungus Trichoderma reesei. Biotechnology for Biofuels, 12, 146. https://doi.org/10.1186/s13068-019-1487-7
  38. Derntl, C., Gudynaite-Savitch, L., Calixte, S., White, T. and Mach, R.L., 2014. Cellular reprogramming of Trichoderma reesei during sexual development. Fungal Genetics and Biology, 72, pp.30–39. https://doi.org/10.1016/j.fgb.2014.05.002
  39. Dolatabadi, J. E. N., & Manjulakumari, D., 2012. Biosensors based on fungal components: Potential in environmental monitoring. Biotechnology Advances, 30(6), pp.1709–1723. https://doi.org/10.1016/j.biotechadv.2012.07.002
  40. Druzhinina, I.S. and Kubicek, C.P., 2017. Fungi in industrial biotechnology: Opportunities and challenges. Mycological Progress, 16(8), pp.1027–1042. https://doi.org/10.1007/s11557-017-1307-1
  41. Eisenman, H. C., Frases, S., Nicola, A. M., Rodrigues, M. L., & Casadevall, A. (2009) ‘Vesicle-associated melanization in Cryptococcus neoformans’, Microbiology, 155(12), pp. 3860–3867. https://doi.org/10.1099/mic.0.032854-0
  42. Eisenman, H.C., Frases, S., Nicola, A.M., Rodrigues, M.L. and Casadevall, A., 2009. Vesicle-associated melanization in Cryptococcus neoformans. Microbiology, 155(12), pp.3860–3867. https://doi.org/10.1099/mic.0.032854-0
  43. Elani, Y., Wang, J., Cornelissen, J.J. and Beales, P.A., 2024. Synthetic biology approaches for engineering extracellular vesicles. Nature Communications, 15, 2049. https://doi.org/10.1038/s41467-024-40022-5
  44. Elsacker, E., Gilchrist, T., Grunewald, C. and Peeters, E., 2023. Mycelium-based materials as engineered living materials: current applications and future potential. Materials Today Bio, 20, p.100621. https://doi.org/10.1016/j.mtbio.2023.100621
  45. Es-haghi, M., Basiri, M. and Hashemi, M., 2023. Engineering extracellular vesicles to deliver therapeutic small RNAs: opportunities and challenges. Frontiers in Bioengineering and Biotechnology, 11, p.1156792. https://doi.org/10.3389/fbioe.2023.1156792
  46. Estrela, S. & Abraham, E. D. (2016) ‘Quorum sensing and virulence in fungal pathogens’, FEMS Microbiology Reviews, 40(5), pp. 654–669. https://doi.org/10.1093/femsre/fuw002
  47. Fang, Y., Wang, Z., Liu, X. and Tyler, B.M., 2022. Biogenesis and biological functions of extracellular vesicles in cellular and organismal communication with microbes. Frontiers in microbiology, 13, p.817844. https://doi.org/10.3389/fmicb.2022.817844
  48. Fernández‐Rhodes, D., Wang, B. & González‐Peña, D., 2024. Engineering extracellular vesicles for sustainable biomanufacturing. Biotechnology and Bioengineering, 121(2), pp.345–359. https://doi.org/10.1002/bit.28461
  49. Ferreira, J.A. et al, 2014. Lignocellulosic biorefineries: Enzyme innovation and integration for biofuel production. Trends in Biotechnology, 32(4), pp.231–237. https://doi.org/10.1016/j.tibtech.2014.02.001
  50. Fischer, C. et al, 2021. Revisiting the potential of Trichoderma reesei in biotechnology. Biotechnology Advances, 49, p.107762. https://doi.org/10.1016/j.biotechadv.2021.107762
  51. Freitas, M. S. et al, 2019. Fungal extracellular vesicles as potential targets for immune interventions. Frontiers in Immunology, 10, p.256. https://doi.org/10.3389/fimmu.2019.00256
  52. Freitas, M.S., Silva, L.P. & Cabral, R.O., 2019. Immunomodulatory components of Candida albicans extracellular vesicles in vaccine development. Frontiers in Cellular and Infection Microbiology, 9, 1216895. https://doi.org/10.3389/fcimb.2019.1216895
  53. Ganzeboom, R. et al, 2024. Engineering fungal hydrogels for regenerative scaffolds: Biofabrication and responsiveness. Biomaterials Science, 12(1), pp.45–61. https://doi.org/10.1039/D3BM01489C
  54. García-Cerón, D., Esteban, P. P., McKenna, J. A., Ang, C.-S., & Bleackley, M. R. (2021) ‘The Fusarium graminearum secretome includes extracellular vesicles and proteins with conserved secretion motifs’, Frontiers in Microbiology, 12, p. 673373. https://doi.org/10.3389/fmicb.2021.673373
  55. Gil-Bona, A., Amador-García, A., Oliveira-Pacheco, J., Ibáñez de Aldecoa, A.L., Guridi, A., Marcet-Houben, M. and Vivanco, M.D., 2015. Proteomics unravels extracellular vesicles as carriers of virulence in Candida albicans. Journal of Proteomics, 127, pp.185–196. https://doi.org/10.1016/j.jprot.2015.06.002
  56. Giménez, G., Llorente, B., Marquina, D. & Fernández-Alegre, E., 2023. Fungal Braid: A modular cloning platform for genetic manipulation of filamentous fungi. Fungal Genetics and Biology, 165, p.103723. https://doi.org/10.1016/j.fgb.2022.103723
  57. Görgens, A., Bremer, M., Ferrer-Tur, R. et al, 2022. Optimisation of storage conditions for extracellular vesicles using PBS-HAT buffer. Journal of Extracellular Vesicles, 11(2), p.e12162. https://doi.org/10.1002/jev2.12162
  58. Gurunathan, S., Kang, M.-H., Jeyaraj, M. & Kim, J.-H., 2021. Review of the current state of exosome research and its application in nanomedicine. Nanomaterials, 11(4), p.870. https://doi.org/10.3390/nano11040870
  59. Hai, T., 2012. Conditional gene expression by tetracycline-responsive promoters in fungi. FEMS Microbiology Letters, 329(1), pp.1–9. https://doi.org/10.1111/j.1574-6968.2012.02501.x
  60. Han, P. and Ivanovski, S., 2022. The use of extracellular vesicles in oral and maxillofacial tissue engineering. Journal of Periodontal Research, 57(4), pp.700–713. https://doi.org/10.1111/jre.12998
  61. Han, Q., Zhao, H., Jiang, Y. et al, 2021. Engineering extracellular vesicles as intelligent drug delivery systems for cancer therapy. Theranostics, 11(18), pp.8663–8678. https://doi.org/10.7150/thno.61182
  62. Han, X., Jiang, Y., Yang, Y., Xu, W., Deng, Y. and Yang, F., 2021. Engineering extracellular vesicles for targeted delivery of therapeutics: from biology to technology. Theranostics, 11(10), pp.4617–4635. https://doi.org/10.7150/thno.56795
  63. Hans, S., Shekhar, S., Jha, R., Pujari, R., & Gade, P. R. (2021) ‘Sphingolipids in fungal pathogenesis’, Frontiers in Cell and Developmental Biology, 9, p. 650655. https://doi.org/10.3389/fcell.2021.650655
  64. Hanson, P.I. and Jackson, L.P., 2016. Mechanisms of membrane bending and scission by the ESCRT machinery. Current Opinion in Cell Biology, 41, pp.22–29. https://doi.org/10.1016/j.ceb.2016.03.004
  65. Henne, W.M., Buchkovich, N.J., Zhao, Y. and Emr, S.D., 2013. The endosomal sorting complex ESCRT-II mediates the assembly and architecture of ESCRT-III helices. Cell, 151(2), pp.356–371. https://doi.org/10.1016/j.cell.2012.09.015
  66. Herkert, P. F. et al, 2019. Extracellular vesicle-mediated resistance mechanisms in fungi. mBio, 10(2), e00119-19. https://doi.org/10.1128/mBio.00119-19
  67. Herkert, P. F. et al, 2019. Extracellular vesicles in fungi: Compositional diversity and application in biotechnology. Frontiers in Microbiology, 10, p.2908. https://doi.org/10.3389/fmicb.2019.02908
  68. Herkert, P. F. et al, 2019. Fungal extracellular vesicles: insights into virulence and immunity. Current Clinical Microbiology Reports, 6(3), pp.132–141. https://doi.org/10.1007/s40588-019-00121-2
  69. Herkert, P. F., Höfs, S., Lopes, L. M., Lopes, B. E., Reyes, F. & Nosanchuk, J. D., 2019. Extracellular vesicles in fungi: Past, present and future perspectives. Fungal Biology Reviews, 33(3), pp.98–109. https://doi.org/10.1016/j.fbr.2019.03.001
  70. Herkert, P. F., Rizzo, J., Trentin, D. S., & Rodrigues, M. L. (2019) ‘Fungal extracellular vesicles: the road ahead’, Journal of Fungi, 5(1), p. 18. https://doi.org/10.3390/jof5010018
  71. Herkert, P.F. et al, 2019. Extracellular vesicles as modulators of host-pathogen interactions in fungi. Frontiers in Microbiology, 10, p.1907. https://doi.org/10.3389/fmicb.2019.01907
  72. Herkert, P.F., Bitencourt, T.A., Komoto, T.T. and Martinez, R., 2019. Role of fungal extracellular vesicles in the modulation of host immune responses. Frontiers in Microbiology, 10, p.1907. https://doi.org/10.3389/fmicb.2019.01907
  73. Herkert, P.F., Bitencourt, T.A., Komoto, T.T. and Martinez, R., 2019. Modulatory potential of extracellular vesicles in fungal infections. Frontiers in Microbiology, 10, p.1907. https://doi.org/10.3389/fmicb.2019.01907
  74. Herkert, W., Kakar, N., Vinke, F. et al, 2019. Fungal extracellular vesicles: insights into host–pathogen interactions and potential medical applications. Medical Mycology, 57(3), pp.S258–S267. https://doi.org/10.1093/mmy/myz047
  75. Hilburger, M.W., Lulevich, V., Zhao, W., Hu, J. and Jin, X., 2019. Boolean logic gate regulation of synthetic vesicle transport systems. Nature Nanotechnology, 14(9), pp.906–913. https://doi.org/10.1038/s41565-019-0483-4
  76. Hirschi, S., Villaverde, A., Garcia-Fruitós, E. and Aznar, M., 2016. Custom-designed protein delivery systems: from bioengineering to medical applications. Trends in Biotechnology, 34(5), pp.381–393. https://doi.org/10.1016/j.tibtech.2016.01.007
  77. Honorato, L. et al, no date. Awaiting publication details.
  78. Honorato, L., Barros, T.F., Almeida, F. et al, n.d. Extracellular vesicles of pathogenic fungi: an overview. Available at: https://doi.org/10.1101/2022.12.01.518709 [Preprint]
  79. Huang, H. and Nikel, P.I., 2019. Bridging the gap between synthetic biology and industrial biotechnology. Microbial Biotechnology, 12(5), pp.930–934. https://doi.org/10.1111/1751-7915.13494
  80. Hung, M.E. and Leonard, J.N., 2016. A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery. Scientific Reports, 6, p.23978. https://doi.org/10.1038/srep23978
  81. Ikeda, M., et al, 2023. Engineering fungal vesicles for targeted delivery: opportunities and challenges. Biotechnology Advances, [in press]. https://doi.org/10.1016/j.biotechadv.2023.108087
  82. Ikeda, M., et al, 2024. Lipidomics of fungal extracellular vesicles: implications for antifungal therapy. Trends in Biotechnology, 42(1), pp.24–38. https://doi.org/10.1016/j.tibtech.2023.10.008
  83. Ikeda, M., Mizuguchi, H., & Oishi, K. (2024) ‘Antifungal vaccine development: advances and future directions’, International Journal of Molecular Sciences, 25(3), p. 1422. https://doi.org/10.3390/ijms25031422
  84. Ilahibaks, N.F., Lei, Z., Mol, E.A., Deshantri, A.K., Jiang, L., Schiffelers, R.M., Vader, P. and Sluijter, J.P., 2019. Biofabrication of cell-derived nanovesicles: a potential alternative to extracellular vesicles for regenerative medicine. Cells, 8(12), p.1509. https://doi.org/10.3390/cells8121509
  85. Iqbal, M., Alghamdi, A. A., Rehman, M. U. & Khan, M. I., 2023. Myconanotechnology: Prospects and challenges in fungal-mediated nanoparticle synthesis. Journal of Nanobiotechnology, 21(1), p.41. https://doi.org/10.1186/s12951-023-01775-5
  86. Isogai, M., van der Vlist, E.J., Witwer, K.W. et al, 2024. Imaging extracellular vesicles: current perspectives and challenges. Nature Reviews Molecular Cell Biology. https://doi.org/10.1038/s41580-024-00661-y
  87. Jain, K.K., 2005. The role of nanobiotechnology in drug discovery. Drug discovery today, 10(21), pp.1435-1442. https://doi.org/10.1016/S1359-6446(05)03573-7
  88. Jain, K.K., 2007. Nanobiotechnology-based drug delivery to the central nervous system. Neurodegenerative Diseases, 4(4), pp.287-291. https://doi.org/10.1159/000101884
  89. Jain, K.K., 2019. Role of nanobiotechnology in drug delivery. Drug delivery systems, pp.55-73. https://doi.org/10.1007/978-1-4939-9798-5_2
  90. Jiang, L., Dong, Y., Qiao, Y. and Peng, H., 2023. Applications of fungal EVs in therapeutics. Microbial Cell Factories, 22, p.17. https://doi.org/10.1186/s12934-023-02071-w
  91. Jin, Y., Lee, J.S., Min, S., Park, H.J., Kang, T.J. and Cho, S.W., 2016. Bioengineered Extracellular Membranous Nanovesicles for Efficient Small‐Interfering RNA Delivery: Versatile Platforms for Stem Cell Engineering and In Vivo Delivery. Advanced Functional Materials, 26(32), pp.5804-5817. https://doi.org/10.1002/adfm.201601430
  92. Jin, Y., Wang, Y., Bai, Z., Zhao, G. and Xu, J., 2022. Efficient CRISPR-Cas9 genome editing in filamentous fungi using AMA1-based vectors and ribonucleoprotein complexes. Journal of Fungi, 8(9), p.960. https://doi.org/10.3390/jof8090960
  93. Jo, E. K., Kim, J. K., Shin, D. M. & Sasakawa, C., 2023. Applications of fungal extracellular vesicles in therapeutic delivery and immune modulation. Trends in Biotechnology, 41(1), pp.34–49. https://doi.org/10.1016/j.tibtech.2022.06.005
  94. Joffe, L. S., Nimrichter, L., & Rodrigues, M. L. (2016) ‘The contribution of fungal extracellular vesicles to pathogenesis, host immune modulation and vaccine development’, Virulence, 7(5), pp. 648–655. https://doi.org/10.1080/21505594.2016.1156829
  95. Joffe, L.S., Nimrichter, L., Rodrigues, M.L. and Del Poeta, M., 2022. Fungal extracellular vesicles: Integrated mechanisms of pathogenesis. Cellular Microbiology, 24(1), p.e13347. https://doi.org/10.1111/cmi.13347
  96. Joffe, L.S., Nimrichter, L., Rodrigues, M.L. and Del Poeta, M., 2016. Potential roles of fungal extracellular vesicles during infection. mSphere, 1(5), e00099-16. https://doi.org/10.1128/mSphere.00099-16
  97. Joffe, L.S., Nimrichter, L., Rodrigues, M.L. and Del Poeta, M., 2016. Potential roles of fungal extracellular vesicles during infection. mSphere, 1(5), e00099-16. https://doi.org/10.1128/mSphere.00099-16
  98. Joffe, L.S., Nimrichter, L., Rodrigues, M.L. and Del Poeta, M., 2016. Potential roles of fungal extracellular vesicles during infection. MSphere, 1(4), pp.10-1128. https://doi.org/10.1128/msphere.00099-16
  99. Jones, M., Gandia, A., John, S. and Bismarck, A., 2021. Leather-like material biofabrication using fungi. Nature Sustainability, 4(1), pp.9-16. https://doi.org/10.1038/s41893-020-00606-1
  100. Kaltenbrunner, M., 2023. Living electronics: Fungal materials for stretchable, self-healing, and biodegradable devices. Nature Electronics, 6(3), pp.184–196. https://doi.org/10.1038/s41928-023-00917-y
  101. Kanda, M., Bachmann, M.H., Hardy, J.W., Frimannson, D.O., Bronsart, L., Wang, A., Sylvester, M.D., Schmidt, T.L., Kaspar, R.L., Butte, M.J. and Murthy, N., 2020. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proceedings of the National Academy of Sciences, 116(13), pp.6826–6831. https://doi.org/10.1073/pnas.1818694116
  102. Kawai-Harada, M., Nishikawa, A., Tanaka, T. et al, 2024. Tangential flow filtration for scalable isolation of extracellular vesicles from fungal bioreactors. Biotechnology Journal, 19(1), p.2300515. https://doi.org/10.1002/biot.202300515
  103. Kawai-Harada, Y., Nimmagadda, V. and Harada, M., 2024. Scalable isolation of surface-engineered extracellular vesicles using tangential flow filtration and size-exclusion chromatography. BMC Methods, 1(1), p.9. https://doi.org/10.1186/s44330-024-00009-0
  104. Khan, I., Khan, M., Umar, M.N. and Oh, D.H., 2015. Nanobiotechnology and its applications in drug delivery system: a review. IET nanobiotechnology, 9(6), pp.396-400. https://doi.org/10.1049/iet-nbt.2014.0062
  105. Komuro, H., Wang, M., Ichihara, M., Sato, Y., Kobayashi, H. and Yamamoto, K., 2021. Engineering extracellular vesicles for organ-specific targeting. Journal of Extracellular Vesicles, 10(12), p.e12165. https://doi.org/10.1002/jev2.12165
  106. Kumar, S., Tiwari, R., Goswami, R. and Kuila, A., 2021. CRISPR/Cas system: a potential tool for genetic engineering of filamentous fungi. Fungal Biology Reviews, 38, pp.36–47. https://doi.org/10.1016/j.fbr.2021.01.001
  107. Lakshmeesha, T.R., Murali, M., Ansari, M.A., Udayashankar, A.C., Alzohairy, M.A., Almatroudi, A., Alomary, M.N., Asiri, S.M.M., Ashwini, B.S., Kalagatur, N.K. and Nayak, C.S., 2020. Biofabrication of zinc oxide nanoparticles from Melia azedarach and its potential in controlling soybean seed-borne phytopathogenic fungi. Saudi Journal of Biological Sciences, 27(8), pp.1923-1930. https://doi.org/10.1016/j.sjbs.2020.06.013
  108. Lattif, A. A., Mukherjee, P. K., Chandra, J., Hoyer, L. L., & Ghannoum, M. A. (2011) ‘Characterisation of biofilm formation by Candida albicans and the differential expression of genes associated with biofilm development’, Mycoses, 54(1), e34–e43. https://doi.org/10.1111/j.1439-0507.2009.01747.x
  109. Lener, T., Gimona, M., Aigner, L., Börger, V., Buzas, E., Camussi, G., Chaput, N., Chatterjee, D., Court, F.A., del Portillo, H.A. and O'Driscoll, L., 2015. Applying extracellular vesicles based therapeutics in clinical trials–an ISEV position paper. Journal of Extracellular Vesicles, 4(1), p.30087. https://doi.org/10.3402/jev.v4.30087
  110. Lener, T., Gimona, M., Aigner, L., Börger, V., Buzas, E., Camussi, G., Chaput, N., Chatterjee, D., Court, F.A., del Portillo, H.A. and O’Driscoll, L., 2015. Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 4(1), p.30087. https://doi.org/10.3402/jev.v4.30087
  111. Levy, C., Grossman, E. & Meir, K., 2024. Anti-inflammatory activity of fungal extracellular vesicles: insights into therapeutic mechanisms. International Journal of Molecular Sciences, 25(3), p.1293. https://doi.org/10.3390/ijms25031293
  112. Levy, S., Fernandes, R. and Domingues, M.R., 2024. Engineered extracellular vesicles: a transformative tool in nanomedicine. Nature Nanotechnology, 19(3), pp.245–257. https://doi.org/10.1038/s41565-024-01476-w
  113. Li, H., Zhang, M., Chen, Y., and Zhao, Y., 2023. miR 143 loaded vesicles from Saccharomyces cerevisiae inhibit tumour growth in xenograft models. Journal of Extracellular Vesicles, 12(1), 23456. https://doi.org/10.1002/jev2.123456
  114. Liang, G. et al, 2021. Exosomes for targeted delivery and mRNA-based therapeutics: Opportunities and challenges. Acta Pharmaceutica Sinica B, 11(8), pp.2419–2435. https://doi.org/10.1016/j.apsb.2021.04.024
  115. Liebana-Jordan, A. et al, 2021. Characterisation of fungal EVs in pathogenesis and immunity. Journal of Fungi, 7(5), p.414. https://doi.org/10.3390/jof7050414
  116. Liebana-Jordan, A., Álvarez, M. A., Candela, M. E., & de la Canal, L., 2021. Fungal extracellular vesicles: An overview of biogenesis, composition, and functions. Current Opinion in Microbiology, 63, pp.156–163. https://doi.org/10.1016/j.mib.2021.06.005
  117. Liébana-Jordan, A., Andrade, J., & Vila, J. C. C. (2021) ‘Fungal extracellular vesicles: insights into the complex regulation of their biogenesis and functions in pathogenicity’, Cells, 10(12), p. 3568. https://doi.org/10.3390/cells10123568
  118. Liebana-Jordan, A., Valerio-Gomez, J., Casadevall, A. and Zaragoza, O., 2021. Extracellular vesicles from fungi: structure, functions, and applications. Journal of Fungi, 7(5), p.414. https://doi.org/10.3390/jof7050414
  119. Liebana-Jordan, M., Brotons, B., Falcon-Perez, J.M. and Gonzalez, E., 2021. Extracellular vesicles in the fungi kingdom. International Journal of Molecular Sciences, 22(13), p.7221. https://doi.org/10.3390/ijms22137221
  120. Liu, M., Zhao, K., Wang, Y., Shen, M., Liu, X., Zhang, Y., Sun, H., Zhang, Q. and Liu, H., 2020. Engineering extracellular vesicles for targeted delivery of nucleic acid therapeutics in cancer. Theranostics, 10(8), pp.3684–3697. https://doi.org/10.7150/thno.41590
  121. Liu, T. & Hu, C., 2023. Fungal extracellular vesicles: Roles in antifungal drug resistance and infection. Critical Reviews in Microbiology, 49(4), pp.371–384. https://doi.org/10.1080/1040841X.2023.2214427
  122. Liu, Y. & Hu, G. (2023) ‘Emerging roles of fungal extracellular vesicles in pathogenesis and host–pathogen interactions’, Frontiers in Cellular and Infection Microbiology, 13, p. 1211347. https://doi.org/10.3389/fcimb.2023.1211347
  123. Liu, Y. and Hu, G., 2023. Environmental implications of fungal extracellular vesicles in soil microbial communication. Environmental Microbiology Reports, 15(2), pp.210–219. https://doi.org/10.1111/1758-2229.13120
  124. Lobb, R.J., Becker, M., Wen Wen, S., Wong, C.S.F., Wiegmans, A.P., Leimgruber, A. and Möller, A., 2015. Optimised exosome isolation protocol for cell culture supernatant and human plasma. Journal of Extracellular Vesicles, 4(1), p.27031. https://doi.org/10.3402/jev.v4.27031
  125. Lu, M., Huang, Y., Sun, W. et al, 2023. Engineered extracellular vesicles for precision oncology therapy. Advanced Drug Delivery Reviews, 198, p.114861. https://doi.org/10.1016/j.addr.2023.114861
  126. Lv, P., Liu, X., Chen, X., Liu, C., Zhang, Y., Chu, C., Wang, J., Wang, X., Chen, X. and Liu, G., 2019. Genetically engineered cell membrane nanovesicles for oncolytic adenovirus delivery: a versatile platform for cancer virotherapy. Nano letters, 19(5), pp.2993-3001. https://doi.org/10.1021/acs.nanolett.9b00145
  127. Lyu, Y., Wang, Z., Liu, K., Xu, K. and Xu, L., 2021. Artificial intelligence-based approaches for analysis of extracellular vesicles: A review. Biosensors and Bioelectronics, 185, p.113272. https://doi.org/10.1016/j.bios.2021.113272
  128. Madan, R., 2023. Role of endosomal pathways in fungal communication. Fungal Genetics and Biology, 167, p.103666. https://doi.org/10.1016/j.fgb.2023.103666
  129. Martinez Lopez, R., Silva, D., and Ortiz Ballester, C., 2023. Protective effect of Candida albicans extracellular vesicle vaccination in immunocompromised murine models of systemic candidiasis. mSphere, 9(4), e00467 24. https://doi.org/10.1128/msphere.00467-24
  130. Martins-Santana, L. et al, 2018. Biosynthesis of high-value chemicals in engineered fungi. Microbial Cell Factories, 17(1), p.131. https://doi.org/10.1186/s12934-018-0981-y
  131. Martins-Santana, L. et al, 2018. Metabolic engineering of Saccharomyces cerevisiae for enhanced vesicle production. Biotechnology Journal, 13(12), p.1800298. https://doi.org/10.1002/biot.201800298
  132. Mayne, R., 2023. Biotechnological potential of fungal-derived extracellular vesicles in regenerative medicine. Trends in Biotechnology, 41(6), pp.673–689. https://doi.org/10.1016/j.tibtech.2023.01.009
  133. Medina-Castellanos, E., Ramírez, L., & Ibarra-Laclette, E. (2022) ‘Role of extracellular vesicles in Fusarium oxysporum f. sp. lycopersici–tomato interaction’, Frontiers in Microbiology, 13, p. 897456. https://doi.org/10.3389/fmicb.2022.897456
  134. Meng, J., Agrahari, V. and Youm, I., 2017. Advances in targeted drug delivery approaches for the central nervous system tumors: the inspiration of nanobiotechnology. Journal of Neuroimmune Pharmacology, 12, pp.84-98. https://doi.org/10.1007/s11481-016-9698-1
  135. Mishra, P.K., Mishra, S., Selvakumar, G. and Bisht, S.C., 2019. Bioformulations for biocontrol and stress management. World Journal of Microbiology and Biotechnology, 35(5), p.77. https://doi.org/10.1007/s11274-019-2659-5
  136. Mosallam, R. M. et al, 2022. Advances in antifungal drug delivery using extracellular vesicles. Journal of Controlled Release, 349, pp.770–788. https://doi.org/10.1016/j.jconrel.2022.07.005
  137. Motaung, T.E. et al, 2023. Fungal extracellular vesicle diversity and their roles in cross-kingdom communication. Trends in Microbiology, 31(2), pp.130–144. https://doi.org/10.1016/j.tim.2022.09.005
  138. Nenciarini, D. & Cavalieri, D. (2023) ‘Fungal extracellular vesicles: biogenesis and biotechnological applications’, Microorganisms, 11(2), p. 394. https://doi.org/10.3390/microorganisms11020394
  139. Nenciarini, D. and Cavalieri, D., 2023. Biotechnological implications of fungal EVs: from basic biology to novel applications. Biotechnology Advances, 64, p.108144. https://doi.org/10.1016/j.biotechadv.2023.108144
  140. Nenciarini, D. and Cavalieri, D., 2023. Translating fungal extracellular vesicles into clinical solutions: emerging concepts and challenges. Biotechnology Advances, 64, p.108144. https://doi.org/10.1016/j.biotechadv.2023.108144
  141. Nenciarini, W. and Cavalieri, R., 2023. Antigen presentation and adjuvant activity of Paracoccidioides brasiliensis extracellular vesicles: a vaccine perspective. Vaccines, 11(2), 145. https://doi.org/10.3390/vaccines11020145
  142. Nødvig, C.S., Nielsen, J.B., Kogle, M.E. and Mortensen, U.H., 2015. A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLOS ONE, 10(7), p.e0133085. https://doi.org/10.1371/journal.pone.0133085
  143. Nsairat, H. et al, 2021. Fungal-derived nanostructures in biosensing: Recent progress and future perspectives. Sensors and Actuators B: Chemical, 330, p.129336. https://doi.org/10.1016/j.snb.2020.129336
  144. Octaviano, F. C. S., Rocha, J. D. B., & Nimrichter, L. (2022) ‘RNA cargo of fungal extracellular vesicles: characteristics and roles in host-pathogen interaction’, Journal of Fungi, 8(6), p. 552. https://doi.org/10.3390/jof8060552
  145. Octaviano, F., Martins, S.T., Moreira, D. et al, 2022. Cross-kingdom communication: The role of fungal EVs in environmental microbiomes. mSphere, 7(1), e00800–21. https://doi.org/10.1128/msphere.00800-21
  146. Oliveira, D. L. et al, 2013. Characterisation of yeast and fungal extracellular vesicles: Evidence for distinct biogenesis pathways and cargo delivery roles. Cell Microbiology, 15(5), pp.709–724. https://doi.org/10.1111/cmi.12076
  147. Oliveira, D.L. et al, 2010. Vesicular mechanisms of protein export in fungi. Eukaryotic Cell, 9(8), pp.1356–1367. https://doi.org/10.1128/EC.00098-10
  148. Oliveira, D.L. et al, n.d. Pathways and molecular mechanisms governing fungal EV formation. Fungal Biology Reviews, in press.
  149. Oliveira, D.L. et al. (2022). "Biotechnological perspectives of fungal extracellular vesicles." Journal of Fungi, 8(4), 321. https://doi.org/10.3390/jof8040321
  150. Oliveira, D.L., Nakayasu, E.S., Joffe, L.S., Guimaraes, A.J. and Borges, C.L., 2020. Cryptococcus neoformans extracellular vesicles: structure, composition, and roles in pathogenicity. mBio, 11(3), e01187-20. https://doi.org/10.1128/mBio.01187-20
  151. Oliveira, D.L., Nakayasu, E.S., Joffe, L.S., Guimarães, A.J., Sobreira, T.J.P., Nosanchuk, J.D., Cordero, R.J.B., Frases, S., Casadevall, A., Almeida, I.C. and Nimrichter, L. (2010) ‘Cryptococcus neoformans cryo-electron microscopy reveals extracellular vesicle biogenesis pathways’, Nature Communications, 1(1), p.10. https://doi.org/10.1038/ncomms1015
  152. Oliveira, D.L., Nakayasu, E.S., Joffe, L.S., Guimarães, A.J., Sobreira, T.J.P., Nosanchuk, J.D., Cordero, R.J.B., Frases, S., Casadevall, A., Almeida, I.C. and Rodrigues, M.L., 2010. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLoS ONE, 5(6), p.e11113. https://doi.org/10.1371/journal.pone.0011113
  153. Oliveira, D.L., Nakayasu, E.S., Joffe, L.S., Guimarães, A.J., Sobreira, T.J., Nosanchuk, J.D., Cordero, R.J., Frases, S., Casadevall, A., Almeida, I.C. and Rodrigues, M.L., 2010. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLoS ONE, 5(6), p.e11113. https://doi.org/10.1371/journal.pone.0011113
  154. Oliveira, D.L., Nakayasu, E.S., Joffe, L.S., Guimarães, A.J., Sobreira, T.J.P., Nosanchuk, J.D., Cordero, R.J.B., Frases, S., Casadevall, A., Almeida, I.C. and Rodrigues, M.L., 2010. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLOS ONE, 5(6), p.e11113. https://doi.org/10.1371/journal.pone.0011113
  155. Patterson, D.P., LaFrance, B., Douglas, T., 2014. Rescuing recombinant proteins by sequestration into bacterial nanocompartments. Journal of the American Chemical Society, 136(15), pp.5481–5488. https://doi.org/10.1021/ja412538h
  156. Paula, F.M. et al, 2019. Extracellular vesicles from Trichoderma reesei: A new frontier in industrial enzyme delivery. Fungal Biology, 123(4), pp.267–275. https://doi.org/10.1016/j.funbio.2019.01.003
  157. Peres da Silva, R., Heiss, C., Black, I., Azadi, P., Gerlach, J.Q., Travassos, L.R., Rodrigues, M.L. and Casadevall, A. (2015) ‘Extracellular vesicles from Paracoccidioides brasiliensis transport polysaccharide antigens and are recognised by dendritic cells’, Cell Microbiology, 17(3), pp.389–407. https://doi.org/10.1111/cmi.12374
  158. Peres da Silva, R., Longo, L.V.G., Cunha, J., Sobreira, T.J.P., Rodrigues, M.L. and Faoro, H., 2015. Extracellular vesicle-mediated export of fungal RNA. Scientific Reports, 5, p.7763. Available at: https://doi.org/10.1038/srep07763.
  159. Peres da Silva, R., Puccia, R., Rodrigues, M.L., Oliveira, D.L., Joffe, L.S., César, G.V. and Goldenberg, S., 2015. Extracellular vesicle-mediated export of fungal RNA. Scientific Reports, 5, p.7763. https://doi.org/10.1038/srep07763
  160. Peres da Silva, R., Puccia, R., Rodrigues, M.L., Oliveira, D.L., Joffe, L.S., César, G.V. and Goldenberg, S., 2015. Extracellular vesicle-mediated export of fungal RNA. Scientific Reports, 5, p.7763. https://doi.org/10.1038/srep07763
  161. Peres da Silva, R., Puccia, R., Rodrigues, M.L., Oliveira, D.L., Joffe, L.S., César, G.V., Nimrichter, L. and Goldenberg, S., 2018. Extracellular vesicle-mediated export of fungal RNA. Scientific Reports, 8(1), p.4849. https://doi.org/10.1038/s41598-018-23202-4
  162. Peruzzi, J.A., Zhao, Z., Weil, M., Carter, K.A. and Huang, L., 2024. Engineered extracellular vesicles for gene therapy and RNA delivery. Advanced Drug Delivery Reviews, 199, p.114013. https://doi.org/10.1016/j.addr.2024.114013
  163. Picon, R., Miguens, I., Tarin, M. et al, 2023. Exosome-based vaccines in the fight against infectious diseases: state of the art and perspectives. Pharmaceutics, 15(4), p.1071. https://doi.org/10.3390/pharmaceutics15041071
  164. Piffer, A. C. et al, 2021. Immune response elicited by fungal extracellular vesicles in murine models. Medical Mycology, 59(7), pp.745–753. https://doi.org/10.1093/mmy/myab012
  165. Piffer, A., Fernandes, L., and Monteiro, S., 2021. Self healing 3D mycelium hydrogels incorporating fungal extracellular vesicles for regenerative biomaterials. Frontiers in Bioengineering and Biotechnology, 9, 667890. https://doi.org/10.3389/fbioe.2021.667890
  166. Piffoux, M., Silva, A. K. A., Wilhelm, C. & Gazeau, F., 2022. Engineering and scaling-up of extracellular vesicle production. Advanced Drug Delivery Reviews, 182, p.114084. https://doi.org/10.1016/j.addr.2021.114084
  167. Piffoux, M., Silva, A.K.A., Wilhelm, C., Gazeau, F. and Tareste, D., 2022. Modification of extracellular vesicles by fusion with liposomes for the design of personalized therapeutics. Advanced Drug Delivery Reviews, 178, p.113958. https://doi.org/10.1016/j.addr.2021.113958
  168. Piffoux, M., Silva, A.K.A., Wilhelm, C., Gazeau, F. and Tareste, D., 2022. Modification of extracellular vesicles by fusion with liposomes for the delivery of therapeutic agents: current state and perspectives. Journal of Controlled Release, 341, pp.446–457. https://doi.org/10.1016/j.jconrel.2021.11.003
  169. Rai, M., Bonde, S., Yadav, A., Pławińska-Czarnak, J. & Ingle, A. P., 2024. Fungal extracellular vesicles and their role in nanobiotechnology and synthetic biology. Critical Reviews in Biotechnology, 44(1), pp.45–61. https://doi.org/10.1080/07388551.2023.2289032
  170. Rami, M., Dubey, S.K., Jain, V. et al, 2024. Mycogenic nanomaterials: biosynthesis, characterisation and therapeutic potential. Journal of Fungi, 10(1), p.101. https://doi.org/10.3390/jof10010101
  171. Ren, E., Liu, C., Lv, P., Wang, J. and Liu, G., 2021. Genetically engineered cellular membrane vesicles as tailorable shells for therapeutics. Advanced Science, 8(21), p.2100460. https://doi.org/10.1002/advs.202100460
  172. Riaz, M., Iqbal, M., Hussain, A. & Khalid, M., 2023. Engineered extracellular vesicles as drug delivery systems for the next generation of nanomedicine. Nanomedicine: Nanotechnology, Biology and Medicine, 49, p.102651. https://doi.org/10.1016/j.nano.2023.102651
  173. Rizzo, J. et al, 2020. Characterisation of fungal extracellular vesicles: Current knowledge and future perspectives. Journal of Fungi, 6(4), p.353. https://doi.org/10.3390/jof6040353
  174. Rizzo, J. et al, 2020. Intercellular and interkingdom communication mediated by fungal EVs. Current Opinion in Microbiology, 56, pp.33–38. https://doi.org/10.1016/j.mib.2020.06.003
  175. Rizzo, J. et al, 2021. Biogenesis and functional complexity of fungal extracellular vesicles. Fungal Genetics and Biology, 150, p.103567. https://doi.org/10.1016/j.fgb.2021.103567
  176. Rizzo, J., Albuquerque, P.C., Wolf, J.M., Nascimento, R., Pereira, M.D., Nosanchuk, J.D. and Rodrigues, M.L., 2020. The role of extracellular vesicles in intercellular and interkingdom communication in fungi. Current Opinion in Microbiology, 56, pp.33–38. https://doi.org/10.1016/j.mib.2020.06.003
  177. Rizzo, J., Albuquerque, P.C., Wolf, J.M., Nascimento, R., Pereira, M.D., Nosanchuk, J.D. and Rodrigues, M.L., 2020. The multifaceted role of fungal extracellular vesicles in pathogenesis and communication. Current Opinion in Microbiology, 56, pp.33–38. https://doi.org/10.1016/j.mib.2020.06.003
  178. Rizzo, J., Becker, F.L., de Almeida, J.R.F., Cronemberger-Andrade, A. and Rodrigues, M.L., 2021. Biogenesis, diversity and functional roles of fungal EVs: current status and perspectives. Fungal Genetics and Biology, 150, p.103567. https://doi.org/10.1016/j.fgb.2021.103567
  179. Rizzo, J., Becker, F.L., de Almeida, J.R.F., Cronemberger-Andrade, A. and Rodrigues, M.L., 2021. Fungal extracellular vesicles: a new frontier in fungal biology. Fungal Genetics and Biology, 150, p.103567. https://doi.org/10.1016/j.fgb.2021.103567
  180. Rizzo, J., Rodrigues, M. L. & Janbon, G., 2017. Extracellular vesicles in fungi: Past, present and future perspectives. Fungal Biology Reviews, 31(1), pp.39–46. https://doi.org/10.1016/j.fbr.2016.12.001
  181. Rizzo, J., Rodrigues, M. L. & Janbon, G., 2020. Extracellular vesicles in fungi: Past, present, and future perspectives. Frontiers in Cellular and Infection Microbiology, 10, p.346. https://doi.org/10.3389/fcimb.2020.00346
  182. Rizzo, J., Rodrigues, M. L., & Janbon, G. (2021) ‘Extracellular vesicles in fungi: past, present and future perspectives’, Fungal Biology Reviews, 35(1), pp. 1–9. https://doi.org/10.1016/j.fbr.2020.10.001
  183. Rizzo, J., Rodrigues, M.L. and Janbon, G., 2020. Extracellular vesicles in Cryptococcus spp. and Candida albicans: Past, present, and future perspectives. Medical Mycology, 58(Supplement_1), pp.S52–S59. https://doi.org/10.1093/mmy/myz099
  184. Rizzo, J., Rodrigues, M.L. and Janbon, G., 2020. Extracellular vesicles in fungi: past, present, and future perspectives. Frontiers in Cellular and Infection Microbiology, 10, p.346. https://doi.org/10.3389/fcimb.2020.00346
  185. Rizzo, J., Rodrigues, M.L. and Janbon, G., 2020. Extracellular vesicles in fungi: past, present, and future perspectives. Frontiers in Cellular and Infection Microbiology, 10, p.346. https://doi.org/10.3389/fcimb.2020.00346
  186. Rizzo, J., Rodrigues, M.L. and Janbon, G., 2020. Extracellular vesicles in fungi: past, present, and future perspectives. Frontiers in Cellular and Infection Microbiology, 10, p.346. https://doi.org/10.3389/fcimb.2020.00346
  187. Rizzo, J., Wong, S.S., Gazi, A.D., Moyrand, F., Chaze, T., Commere, P.H. and Rodrigues, M.L., 2017. Exploring the roles of fungal extracellular vesicles in disease and therapy. Current Opinion in Microbiology, 40, pp.88–94. https://doi.org/10.1016/j.mib.2017.11.003
  188. Rizzo, J., Wong, S.S.W., Gazi, A.D., Moyrand, F., Chaze, T., Commere, P.H., Strazielle, N., Matondo, M., Piro, F. and Marichal-Gallardo, P., 2020. Cryptococcus neoformans extracellular vesicles properties and their use as vaccine platforms. Journal of Extracellular Vesicles, 9(1), p.1703263. https://doi.org/10.1080/20013078.2019.1703263
  189. Rizzo, J., Wong, S.S.W., Gazi, A.D., Moyrand, F., Chaze, T., Commere, P.H., Matondo, M., Piro, F. and Marichal-Gallardo, P., 2020. Cryptococcus neoformans extracellular vesicles properties and their use as vaccine platforms. Journal of Extracellular Vesicles, 9(1), p.1703263. https://doi.org/10.1080/20013078.2019.1703263
  190. Rizzo, J., Wong, S.S.W., Gazi, A.D., Moyrand, F., Chaze, T., Janbon, G., Botts, M.R., Eisenschlos, C., Peres da Silva, R., Coppee, J.Y. and Doering, T.L., 2020. Characterization of extracellular vesicles produced by Aspergillus fumigatus protoplasts. mSphere, 5(4), p.e00476-20. Available at: https://doi.org/10.1128/mSphere.00476-20.
  191. Rocha, J. D. B., Bitencourt, T. A., Miranda, K., & Nimrichter, L. (n.d.) ‘Functional impact of antifungal treatment on the RNA cargo of Candida auris extracellular vesicles’. Manuscript in preparation or under review (DOI not available yet)
  192. Rodrigues, M. L. et al, 2018. The interplay between fungal extracellular vesicles and host immunity. Current Opinion in Microbiology, 46, pp.98–105. https://doi.org/10.1016/j.mib.2018.10.002
  193. Rodrigues, M. L. et al, 2018. The promise of fungal extracellular vesicles in skin regeneration. Journal of Investigative Dermatology, 138(5), pp.1019–1021. https://doi.org/10.1016/j.jid.2018.01.018
  194. Rodrigues, M.L. and Casadevall, A., 2018. A two‐way road: novel roles for fungal extracellular vesicles. Molecular Microbiology, 110(1), pp.11-15. https://doi.org/10.1111/mmi.14095
  195. Rodrigues, M.L., Nakayasu, E.S., Oliveira, D.L. et al, 2016. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryotic Cell, 7(1), pp.58–67. https://doi.org/10.1128/EC.00370-07
  196. Rodrigues, M.L., Nimrichter, L., Oliveira, D.L., Frases, S., Miranda, K., Zaragoza, O., Alvarez, M., Nakouzi, A., Feldmesser, M. and Casadevall, A., 2007. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryotic Cell, 6(1), pp.48–59. https://doi.org/10.1128/EC.00318-06
  197. Rodrigues, M.L., Nimrichter, L., Oliveira, D.L., Frases, S., Miranda, K., Zaragoza, O., Alvarez, M. and Casadevall, A., 2007. Vesicular transport system in Cryptococcus neoformans: extracellular vesicles carry virulence factors and immunomodulatory proteins. Eukaryotic Cell, 7(1), pp.58-67. Available at: https://doi.org/10.1128/EC.00370-07.
  198. Rozhkova, A.M. and Kislitsin, D.I., 2021. Development of CRISPR-based gene editing tools for filamentous fungi. Microbiology, 90(4), pp.423–434. https://doi.org/10.1134/S0026261721040104
  199. Rutter, B.D. and Innes, R.W., 2023. Communication between kingdoms: fungal extracellular vesicles as modulators of plant and animal hosts. Trends in Microbiology, 31(2), pp.95–108. https://doi.org/10.1016/j.tim.2022.10.004
  200. Rutter, B.D. and Innes, R.W., 2023. Extracellular vesicles as key players in fungal pathogenesis and host interaction. Nature Reviews Microbiology, 21(3), pp.145–159. https://doi.org/10.1038/s41579-022-00768-1
  201. Salmon, H., 2022. Biomanufacturing of extracellular vesicles using microfluidic devices: Challenges and future perspectives. Lab on a Chip, 22(4), pp.655–668. https://doi.org/10.1039/D1LC01050A
  202. Schuh, A.L. and Audhya, A., 2014. The ESCRT machinery: from the plasma membrane to endosomes and back again. Critical Reviews in Biochemistry and Molecular Biology, 49(3), pp.242–261. https://doi.org/10.3109/10409238.2014.899192
  203. Seiboth, B., Ivanova, C., and Druzhinina, I., 2011. Enzyme production by Trichoderma: From strain selection to systems biology. Advances in Applied Microbiology, 76, pp.1–40. https://doi.org/10.1016/B978-0-12-387044-5.00001-6
  204. Shaheen, M. N. F., El-Baky, N. A., & Eid, A. M., 2021. Emerging applications of fungal biotechnology in environmental and therapeutic sectors. Mycology, 12(2), pp.106–116. https://doi.org/10.1080/21501203.2020.1862911
  205. Shaheen, T. I., Fouda, A., Salem, S. S., & Barakat, K. M., 2021. Green synthesis of metal nanoparticles using fungi: mechanisms and applications. Materials Science and Engineering: C, 124, p.112056. https://doi.org/10.1016/j.msec.2021.112056
  206. Shaheen, T.I., et al, 2021. Fungal nanobionics: Principle, advances and applications. Environmental Nanotechnology, Monitoring & Management, 16, p.100496. https://doi.org/10.1016/j.enmm.2021.100496
  207. Sharma, A. and Salwan, R., 2019. Mycoremediation: Fungal applications in industrial biotransformation. Environmental Science and Pollution Research, 26(2), pp.1234–1245. https://doi.org/10.1007/s11356-018-3796-9
  208. Shen, X., Bai, Z., Zhao, J. and Zhang, W., 2024. Engineering strategies in filamentous fungi for high-efficiency gene editing. Biotechnology Advances, 66, p.108222. https://doi.org/10.1016/j.biotechadv.2024.108222
  209. Shen, X., Wang, Y., Qiu, Y. and Li, C., 2023. Applications and advances of CRISPR/Cas9 in filamentous fungi. Applied Microbiology and Biotechnology, 107(4), pp.1289–1302. https://doi.org/10.1007/s00253-023-12556-w
  210. Shi, S., Lin, Y., Wang, R. et al, 2020. Engineered exosomes for targeted cancer therapy and immunomodulation. Science Advances, 6(18), eaaz8528. https://doi.org/10.1126/sciadv.aaz8528
  211. Shi, T., Rahimi, M.J., Qin, C., and Zhang, Y., 2017. CRISPR-mediated functional gene editing in Aspergillus niger. Applied Microbiology and Biotechnology, 101(19), pp.7309–7321. https://doi.org/10.1007/s00253-017-8484-4
  212. Silva, B.M. et al, 2019. Potential applications of fungal extracellular vesicles in diagnostics and therapeutics. Frontiers in Cellular and Infection Microbiology, 9, p.448. https://doi.org/10.3389/fcimb.2019.00448
  213. Silva, M. V., Rizzo, J., & Nimrichter, L. (2019) ‘Extracellular vesicles from Paracoccidioides brasiliensis transport RNA capable of modulating the host immune response’, Scientific Reports, 9, p. 13936. https://doi.org/10.1038/s41598-019-50299-6
  214. Silva, V.G., da Costa, J.M., de Oliveira, M.M. and Rodrigues, M.L., 2019. Fungal extracellular vesicles as potent immunomodulatory agents. mSphere, 4(5), e00540-19. https://doi.org/10.1128/mSphere.00540-19
  215. Simon, J., Uhlig, K., Mattinzoli, D. et al, 2020. Standardisation of extracellular vesicle isolation and characterisation protocols for clinical applications. Journal of Clinical Investigation, 130(3), pp.1210–1226. https://doi.org/10.1172/JCI134907
  216. Singh, R., Nawale, L., Arkile, M., Wadhwani, S., & Chopade, B. A., 2020. Application of fungal metabolites in biosensor construction. Current Opinion in Green and Sustainable Chemistry, 23, pp.35–41. https://doi.org/10.1016/j.cogsc.2020.01.002
  217. Soliman, E.A., Ahmed, R.R. and Abdel-Ghany, M., 2013. Industrial applications of microbial lipases. Journal of Applied Sciences Research, 9(4), pp.2621–2629. (Note: no DOI available; consider replacing with a Scopus-indexed article if required)
  218. Song, L., Ouedraogo, J.P., Kolbusz, M. and Tsang, A., 2019. Efficient genome editing using CRISPR-Cas9 in filamentous fungi. Methods in Molecular Biology, 2040, pp.155–168. https://doi.org/10.1007/978-1-4939-9654-2_12
  219. Song, R., Zhai, Q., Sun, L., Huang, E., Zhang, Y., Zhu, H. and Zhao, Y., 2018. CRISPR/Cas9: a powerful tool for the functional analysis of genes in Aspergillus niger. World Journal of Microbiology and Biotechnology, 34(4), p.57. https://doi.org/10.1007/s11274-018-2437-9
  220. Staufer, O., Schröter, M., Platzman, I. and Spatz, J.P., 2021. Bottom-up assembly of functional synthetic extracellular vesicles. Science Advances, 7(3), p.eabc6582. https://doi.org/10.1126/sciadv.abc6582
  221. Stawarska, A., Jędrzejczak-Silicka, M. & Królicka, A., 2024. Biotechnological and therapeutic applications of fungal extracellular vesicles. Applied Microbiology and Biotechnology, 108, pp.1221–1237. https://doi.org/10.1007/s00253-024-12997-6
  222. Sterzenbach, U., Putz, U., Low, L.H., Silke, J., Tan, S.S. and Howitt, J., 2017. Engineered exosomes as vehicles for biologically active proteins. Molecular Therapy, 25(6), pp.1269–1278. https://doi.org/10.1016/j.ymthe.2017.03.030
  223. Stone, S. and Wang, Y., 2023. Emerging biomaterials for scalable production of extracellular vesicles. Advanced Healthcare Materials, 12(3), p.2202046. https://doi.org/10.1002/adhm.202202046
  224. Stranford, D. M. & Leonard, J. N., 2017. Building better sensors: Emerging technologies for molecular diagnostics. Biotechnology Journal, 12(9), p.1600673. https://doi.org/10.1002/biot.201600673
  225. Tang, M., Sun, Y., Zhang, J. et al, 2023. Tumor-targeted exosome delivery for gene therapy and cancer immunotherapy. Advanced Functional Materials, 33(11), p.2207873. https://doi.org/10.1002/adfm.202207873
  226. Théry, C., Witwer, K.W., Aikawa, E., Alcaraz, M.J., Anderson, J.D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G.K., et al. (2018) ‘Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles’, Journal of Extracellular Vesicles, 7(1), p.1535750. https://doi.org/10.1080/20013078.2018.1535750
  227. Thomas, R.C., Santiago, H., Gómez, A.D. and de Souza, W., 2023. Standardisation of fungal extracellular vesicle isolation: challenges and new frontiers in EV-based therapeutics. Journal of Extracellular Biology, 2(3), pp.1–13. https://doi.org/10.1002/jex2.89
  228. Tiwari, B. K. & Dufossé, L., 2023. Applications of fungal synthetic biology for sustainable bio-based pigment production. Trends in Food Science & Technology, 135, pp.374–386. https://doi.org/10.1016/j.tifs.2023.01.006
  229. Tsivileva, O., Pozdnyakov, A. and Ivanova, A., 2021. Polymer nanocomposites of selenium biofabricated using fungi. Molecules, 26(12), p.3657. https://doi.org/10.3390/molecules26123657
  230. Ullah, A. et al, 2023. Immune modulation by fungal EVs and implications for antifungal therapy. Mycoses, 66(2), pp.125–134. https://doi.org/10.1111/myc.13493
  231. Ullah, A., Chandrasekaran, G., Brul, S. and Smits, G.J., 2020. CRISPR-Cas9 mediated genome editing in filamentous fungi: progress and prospects. Fungal Biology Reviews, 34(4), pp.228–238. https://doi.org/10.1016/j.fbr.2020.04.002
  232. Ullah, A., Javed, M.R., Imran, M. and Khan, M.A., 2023. Immunomodulatory strategies of pathogenic fungi: a role for extracellular vesicles. Mycoses, 66(2), pp.125–134. https://doi.org/10.1111/myc.13493
  233. Ullah, A., Wang, Y., Xu, G., Zhao, L., & Wu, L. (2023) ‘Biological functions and mechanisms of fungal extracellular vesicles in pathogenesis’, Frontiers in Microbiology, 14, p. 1156627. https://doi.org/10.3389/fmicb.2023.1156627
  234. Valiante, V., 2023. Genetic engineering of Aspergillus spp. for extracellular vesicle modulation. FEMS Microbiology Reviews, 47(3), fuad022. https://doi.org/10.1093/femsre/fuad022
  235. Vallejo, M. C., Nakayasu, E. S., Matsuo, A. L., Sobreira, T. J. P., Longo, L. V. G., Ganiko, L., Almeida, I. C., & Puccia, R. (2012) ‘Vesicle and vesicle-free extracellular proteome of Paracoccidioides brasiliensis: comparative analysis with other pathogenic fungi’, Journal of Proteome Research, 11(3), pp. 1676–1685. https://doi.org/10.1021/pr200948j
  236. Vallejo, M.C., Matsuo, A.L., Ganiko, L., Medeiros, L.C., Miranda, K., Silva, L.S., Freymüller, E., Travassos, L.R. and Puccia, R., 2012. The pathogenic fungus Paracoccidioides brasiliensis exports extracellular vesicles containing highly immunogenic α‐galactosyl epitopes. Eukaryotic Cell, 11(4), pp.405–416. https://doi.org/10.1128/EC.05389-11
  237. Vandivort, T.C., Anseth, K.S. and Bowman, C.N., 2020. Regulatory considerations for extracellular vesicle-based therapeutics. Trends in Biotechnology, 38(11), pp.1224–1236. https://doi.org/10.1016/j.tibtech.2020.06.008
  238. Vargas, G. et al, 2020. Surface composition of fungal extracellular vesicles reveals the presence of immunogenic and cell wall components. Journal of Fungi, 6(2), p.68. https://doi.org/10.3390/jof6020068
  239. Vargas, G., Rocha, J. D. B., Oliveira, D. L., Albuquerque, P. C., Frases, S., Santos, S. S., Nosanchuk, J. D., Gomes, A. M. O., Medeiros, L. C. A. S., Miranda, K. R., Sobreira, T. J. P., Nakayasu, E. S., Almeida, I. C., Casadevall, A., & Rodrigues, M. L. (2015) ‘Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans’, Cellular Microbiology, 17(3), pp. 389–407. https://doi.org/10.1111/cmi.12374
  240. Vargas, G., Rocha, J.D., Oliveira, D.L., Albuquerque, P.C., Frases, S., Santos, S.S., Nosanchuk, J.D., Gomes, A.M., Medeiros, L.C., Miranda, K. and Rodrigues, M.L. (2015) ‘Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans’, Cellular Microbiology, 17(3), pp.389–407. https://doi.org/10.1111/cmi.12374
  241. Vargas, G., Rocha, J.D.B., Oliveira, D.L., Albuquerque, P.C., Frases, S., Santos, S.S., Nosanchuk, J.D., Gomes, A.M.O., Medeiros, L.C.A., Miranda, K. and Rodrigues, M.L., 2015. Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cellular Microbiology, 17(3), pp.389–407. https://doi.org/10.1111/cmi.12374
  242. Vázquez, E. and Villaverde, A., 2010. Engineering protein self-assembly for biomedical applications. Trends in Biotechnology, 28(10), pp.525–532. https://doi.org/10.1016/j.tibtech.2010.07.003
  243. Verweij, F.J., Balaj, L., Boulanger, C.M. et al, 2021. The power of imaging to understand extracellular vesicle biology in vivo. Nature Methods, 18(10), pp.1013–1026. https://doi.org/10.1038/s41592-021-01209-1
  244. Visser, L.J., Oliveira, D.L., Zhang, H. et al, 2024. Super-resolution imaging of fungal extracellular vesicles reveals nanoscale heterogeneity. Nature Communications, 15(1), p.1471. https://doi.org/10.1038/s41467-024-38925-4
  245. Votteler, J., Ogohara, C., Yi, S., Hsia, Y., Nattermann, U., Belnap, D.M., King, N.P. and Sundquist, W.I., 2018. Designed proteins induce the formation of nanocage-containing extracellular vesicles. Nature, 540(7632), pp.292–295. https://doi.org/10.1038/nature20607
  246. Waheed, S., Li, Z., Zhang, F., Chiarini, A., Armato, U. and Wu, J., 2022. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. Journal of Nanobiotechnology, 20(1), p.395. https://doi.org/10.1186/s12951-022-01605-4
  247. Wang, J. and Li, X., 2023. Extracellular vesicles as nanocarriers for antifungal drug delivery: emerging potential and challenges. Frontiers in Pharmacology, 14, p.1102298. https://doi.org/10.3389/fphar.2023.1102298
  248. Wang, J., Zhu, Y., Ma, Y., Qu, Q., Song, F., Yu, X. and Sun, D., 2023. Engineered extracellular vesicles as therapeutic delivery systems. Advanced Science, 10(4), p.2202909. https://doi.org/10.1002/advs.202202909
  249. Wang, M., Chen, Y., Chen, J. & Yang, M., 2023. Extracellular vesicles in nanomedicine: design, engineering, and application in disease therapy. Advanced Drug Delivery Reviews, 194, p.114753. https://doi.org/10.1016/j.addr.2022.114753
  250. Wang, Q. and Coleman, J.J., 2019. Progress and challenges: CRISPR/Cas9 gene editing in filamentous fungi. Journal of Fungi, 5(3), p.86. https://doi.org/10.3390/jof5030086
  251. Wang, Y., Liu, Y. and Zhao, H., 2023. Molecular insights into fungal vesicle formation via ESCRT. Molecular Microbiology, 120(4), pp.639–654. https://doi.org/10.1111/mmi.15064
  252. Wiklander, O.P.B. et al, 2019. Advances in EVs for therapeutic delivery. Nature Reviews Drug Discovery, 18(7), pp.487–497. https://doi.org/10.1038/s41573-019-0031-2
  253. Wiklander, O.P.B., Brennan, M.Á., Lötvall, J., Breakefield, X.O. and El Andaloussi, S. (2019) ‘Advancing extracellular vesicle biomarkers: isolation and detection’, Nature Reviews Neurology, 15(6), pp.321–325. https://doi.org/10.1038/s41582-019-0173-4
  254. Willms, E., Johansson, H.J., Mäger, I., Lee, Y., Blomberg, K.E.M., Sadik, M., Alaarg, A., Smith, C.I.E., Lehtiö, J., El Andaloussi, S. and Wood, M.J.A. (2018) ‘Cells release subpopulations of exosomes with distinct molecular and biological properties’, Scientific Reports, 6, p.22519. https://doi.org/10.1038/srep22519
  255. Xu, R., Greening, D.W., Rai, A. et al, 2024. Omics-driven profiling of fungal EVs reveals bioactive components influencing host-pathogen communication. Molecular and Cellular Proteomics, 23(2), p.100450. https://doi.org/10.1016/j.mcpro.2024.100450
  256. Xu, R., Greening, D.W., Zhu, H.J., Takahashi, N. and Simpson, R.J., 2024. Surface protein engineering of extracellular vesicles for targeted delivery. Nature Reviews Bioengineering, 2, pp.132–146. https://doi.org/10.1038/s44222-023-00042-y
  257. Xu, Y., Li, J., & Chen, H. (2024) ‘Molecular mechanisms of fungal EV-mediated immune modulation: a review’, Journal of Medical Microbiology, 73(1), p. 001736. https://doi.org/10.1099/jmm.0.001736
  258. Yuan, H., Ding, X., Duan, L. et al, 2023. Size exclusion chromatography and tangential flow filtration improve purity and yield of EVs for clinical applications. Analytical and Bioanalytical Chemistry, 415(12), pp.2781–2793. https://doi.org/10.1007/s00216-023-04892-0
  259. Yuan, L. et al, 2024. Engineered extracellular vesicles for RNA delivery: Design, production, and application in cancer therapy. Advanced Drug Delivery Reviews, 203, p.114958. https://doi.org/10.1016/j.addr.2023.114958
  260. Zafar, A., Rizvi, R. and Mahmood, I., 2019. Biofabrication of silver nanoparticles from various plant extracts: blessing to nanotechnology. International Journal of Environmental Analytical Chemistry, 99(14), pp.1434-1445. https://doi.org/10.1080/03067319.2019.1622698
  261. Zamith-Miranda, D. et al, 2021. Molecular profiling of fungal extracellular vesicles reveals the diversity of virulence-associated factors. mSphere, 6(3), e00215-21. https://doi.org/10.1128/mSphere.00215-21
  262. Zamith-Miranda, D. et al, 2021. Multi-omics signature of Cryptococcus neoformans extracellular vesicles. mSystems, 6(3), e00402-21. https://doi.org/10.1128/mSystems.00402-21
  263. Zamith-Miranda, D., et al, 2021. Omics-based approaches in fungal EV research. Frontiers in Genetics, 12, p.708882. https://doi.org/10.3389/fgene.2021.708882
  264. Zamith-Miranda, D., Heyman, H.M., Couvillion, S.P., Cordero, R.J.B., Rodrigues, M.L. and Nimrichter, L., 2021. Omics approaches for understanding biogenesis, composition and functions of fungal extracellular vesicles. Frontiers in Genetics, 12, p.648524. Available at: https://doi.org/10.3389/fgene.2021.648524.
  265. Zamith-Miranda, D., Nimrichter, L., Rodrigues, M. L., & Nosanchuk, J. D. (2021) ‘Fungal extracellular vesicles: modulating host-pathogen interactions by both the fungus and the host’, Pathogens, 10(5), p. 500. https://doi.org/10.3390/pathogens10050500
  266. Zamith-Miranda, D., Nimrichter, L., Rodrigues, M.L. and Nosanchuk, J.D., 2021. Fungal extracellular vesicles: modulating host–pathogen interactions by both the surface and the cargo. Frontiers in Cellular and Infection Microbiology, 11, p.689435. https://doi.org/10.3389/fcimb.2021.689435
  267. Zamith-Miranda, D., Nimrichter, L., Rodrigues, M.L. et al, 2021. Proteomic analysis of fungal extracellular vesicles: implications for fungal biology and pathogenesis. mBio, 12(2), e03156–20. https://doi.org/10.1128/mBio.03156-20
  268. Zhang, F., Guo, J., Zhang, Z. et al. Application of engineered extracellular vesicles for targeted tumor therapy. J Biomed Sci 29, 14 (2022). https://doi.org/10.1186/s12929-022-00798-y
  269. Zhang, Y., Liu, Y., Liu, H. and Tang, W.H., 2021. Engineering extracellular vesicles for therapeutic delivery. Journal of Clinical Investigation, 131(1), p.e138070. https://doi.org/10.1172/JCI138070
  270. Zhang, Y., Liu, Y., Liu, H. et al, 2021. Engineering extracellular vesicles for cancer therapy. Biomaterials, 276, p.121056. https://doi.org/10.1016/j.biomaterials.2021.121056
  271. Zhao, K., Bleackley, M., Chisanga, D., Gangoda, L., Fonseka, P., Liem, M., Kalra, H., Al Saffar, H., Keerthikumar, S., Ang, C.S. and Adda, C.G., 2019. Extracellular vesicles secreted by Saccharomyces cerevisiae are involved in cell wall remodelling. Communications biology, 2(1), p.305. https://doi.org/10.1038/s42003-019-0538-8
  272. Zhao, K., Bleackley, M.R., Chisanga, D., Gangoda, L., Fonseka, P., Liem, M., Kalra, H. and Mathivanan, S., 2019. Extracellular vesicles secreted by Saccharomyces cerevisiae are involved in cell wall remodelling. Communications Biology, 2(1), p.305. https://doi.org/10.1038/s42003-019-0552-8
  273. Zhao, Z., McGill, J., Gamero-Kubota, P. and He, M., 2016. Membrane-based engineering of exosomes for target-specific delivery. Biomaterials, 35(22), pp.7608–7619. https://doi.org/10.1016/j.biomaterials.2014.06.032
  274. Zheng, Y., Li, Z., Shehzad, A. and Zhang, S., 2022. Glycoengineering of extracellular vesicles for targeted delivery. Biomaterials, 286, p.121571. https://doi.org/10.1016/j.biomaterials.2022.121571
  275. Zia, F. et al, 2010. Biocompatible fungal extracellular vesicles for therapeutic applications. International Journal of Nanomedicine, 5, pp.117–125. https://doi.org/10.2147/IJN.S8946
  276. Zia, F., Ghafoor, N., Iqbal, M. et al, 2010. PEGylation and its applications in biotechnology and nanomedicine: a review. Journal of Controlled Release, 141(2), pp.275–283. https://doi.org/10.1016/j.jconrel.2010.03.007
  277. Zickler, A.M., Pretsch, D., Brückner, M. and Müller, M., 2023. Strategies for RNA enrichment in extracellular vesicles for gene therapy. Molecular Therapy – Nucleic Acids, 33, pp.325–336. https://doi.org/10.1016/j.omtn.2023.03.008
  278. Zou, J., Chen, L., Zhao, Y. & Han, D., 2024. Biotechnological exploitation of fungal vesicles in environmental and medical applications. Biotechnology Advances, 68,

Downloads

Download data is not yet available.