Skip to main navigation menu Skip to main content Skip to site footer

Admin menu

Articles

Vol. 3 No. 1 (2025): International Journal of Information & Digital Security

Protocols, Technologies, and Global Deployment Challenges for Quantum Key Distribution

  • Wael Badawy
Submitted
November 19, 2025
Published
2025-12-24

Abstract

Quantum Key Distribution (QKD) offers a revolutionary method for achieving information-theoretic security in communication systems by leveraging quantum mechanical principles. With foundational protocols like BB84 and newer innovations such as phase-matching and device-independent QKD, the field has rapidly progressed from theoretical constructs to real-world prototypes. Recent advancements in integrated photonics, high-speed key generation, and satellite-based systems suggest a transformative potential for global cybersecurity infrastructure. However, significant challenges remain in extending secure communication distances, ensuring practical implementation security, reducing cost and size of components, and integrating QKD into existing network architectures. This paper reviews the state-of-the-art in QKD, discusses emerging trends such as chip-based and layered QKD systems, evaluates satellite and free-space deployments, and examines the practical limitations and solutions for long-distance and high-rate secure communications. It concludes by highlighting future directions including standardization, hybrid classical-quantum infrastructures, and software-defined QKD networks.

References

  1. Bennett, C. H., & Brassard, G. (1984). Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science, 560, 7–11. https://doi.org/10.1016/j.tcs.2014.05.025
  2. Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2002). Quantum cryptography. Reviews of Modern Physics, 74(1), 145–195. https://doi.org/10.1103/RevModPhys.74.145
  3. Lo, H. K., Curty, M., & Tamaki, K. (2014). Secure quantum key distribution. Nature Photonics, 8(8), 595–604. https://doi.org/10.1038/nphoton.2014.149
  4. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dušek, M., Lütkenhaus, N., & Peev, M. (2009). The security of practical quantum key distribution. Reviews of Modern Physics, 81(3), 1301–1350. https://doi.org/10.1103/RevModPhys.81.1301
  5. Pirandola, S., Andersen, U. L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., ... & Wallden, P. (2020). Advances in quantum cryptography. Advances in Optics and Photonics, 12(4), 1012–1236. https://doi.org/10.1364/AOP.361502
  6. Xu, F., Ma, X., Zhang, Q., Lo, H. K., & Pan, J. W. (2020). Secure quantum key distribution with realistic devices. Reviews of Modern Physics, 92(2), 025002. https://doi.org/10.1103/RevModPhys.92.025002
  7. Yin, H. L., Chen, T. Y., Yu, Z. W., Liu, H., You, L. X., Zhou, Y. H., ... & Pan, J. W. (2016). Measurement-device-independent quantum key distribution over a 404 km optical fiber. Physical Review Letters, 117(19), 190501. https://doi.org/10.1103/PhysRevLett.117.190501
  8. Lucamarini, M., Yuan, Z. L., Dynes, J. F., & Shields, A. J. (2018). Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature, 557(7705), 400–403. https://doi.org/10.1038/s41586-018-0066-6
  9. Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., ... & Tomita, A. (2011). Field test of quantum key distribution in the Tokyo QKD network. Optics Express, 19(11), 10387–10409. https://doi.org/10.1364/OE.19.010387
  10. Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, J., Boxleitner, W., ... & Zeilinger, A. (2009). The SECOQC quantum key distribution network in Vienna. New Journal of Physics, 11(7), 075001. https://doi.org/10.1088/1367-2630/11/7/075001
  11. Lo, H. K., & Chau, H. F. (1999). Unconditional security of quantum key distribution over arbitrarily long distances. Science, 283(5410), 2050–2056. https://doi.org/10.1126/science.283.5410.2050
  12. Chen, J. P., Zhang, C., Li, Y. H., Liu, Y., Han, Z. F., & Guo, G. C. (2020). Twin-field quantum key distribution over 511 km fiber with phase post-selection. Physical Review Letters, 124(7), 070501. https://doi.org/10.1103/PhysRevLett.124.070501
  13. Wang, S., Chen, W., Yin, Z. Q., He, D. Y., Song, X. T., Li, H. W., ... & Han, Z. F. (2017). Practical gigahertz quantum key distribution robust against channel disturbance. Optics Letters, 42(3), 500–503. https://doi.org/10.1364/OL.42.000500
  14. Yuan, Z. L., Lucamarini, M., Roberts, G. L., Dynes, J. F., & Shields, A. J. (2018). High-speed dual-detector quantum key distribution. Applied Physics Letters, 113(4), 041104. https://doi.org/10.1063/1.5038032
  15. NSA. (2021). Quantum-resistant security. National Security Agency. Retrieved from https://www.nsa.gov/News-Features/Feature-Stories/Article-View/Article/2726383/quantum-resistant-security/
  16. ETSI. (2023). Quantum-safe cryptography standardization. European Telecommunications Standards Institute. Retrieved from https://www.etsi.org/technologies/quantum-safe-cryptography
  17. Korzh, B., Lim, C. C. W., Houlmann, R., Gisin, N., Li, M. J., Nolan, D., ... & Zbinden, H. (2015). Provably secure and practical quantum key distribution over 307 km of optical fibre. Nature Photonics, 9(3), 163–168. https://doi.org/10.1038/nphoton.2014.327
  18. Boaron, A., Boso, G., Rusca, D., Vulliez, C., Autebert, C., Caloz, M., ... & Zbinden, H. (2018). Secure quantum key distribution over 421 km of optical fiber. Physical Review Letters, 121(19), 190502. https://doi.org/10.1103/PhysRevLett.121.190502
  19. Wang, J., Chen, J., Yin, Z., Zhang, Y., Zhang, C., & Han, Z. (2021). Long-distance twin-field quantum key distribution over more than 600 km. Nature Photonics, 15, 531–536. https://doi.org/10.1038/s41566-021-00811-0
  20. Zhang, Q., Yu, Z. W., Chen, T. Y., Liu, Y., & Pan, J. W. (2023). Quantum communication and quantum network. National Science Review, 10(4), nwac257. https://doi.org/10.1093/nsr/nwac257
  21. Makarov, V., Anisimov, A., & Skaar, J. (2006). Effects of detector efficiency mismatch on security of quantum cryptosystems. Physical Review A, 74(2), 022313. https://doi.org/10.1103/PhysRevA.74.022313
  22. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., & Makarov, V. (2010). Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photonics, 4, 686–689. https://doi.org/10.1038/nphoton.2010.214
  23. Zhao, Y., Fung, C. H. F., Qi, B., Chen, C., & Lo, H. K. (2008). Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A, 78(4), 042333. https://doi.org/10.1103/PhysRevA.78.042333
  24. Lim, C. C. W., Portmann, C., Tomamichel, M., Renner, R., & Gisin, N. (2014). Device-independent quantum key distribution with local Bell test. Physical Review X, 3(3), 031006. https://doi.org/10.1103/PhysRevX.3.031006
  25. Lucamarini, M., Yuan, Z. L., Dynes, J. F., & Shields, A. J. (2017). Practical security bounds against the Trojan-horse attack in quantum key distribution. Physical Review A, 97(3), 032333. https://doi.org/10.1103/PhysRevA.97.032333
  26. Ma, X., Fung, C. H. F., & Lo, H. K. (2007). Quantum key distribution with entangled photon sources. Physical Review A, 76(1), 012307. https://doi.org/10.1103/PhysRevA.76.012307
  27. Choi, Y., Kim, Y., Lee, K., Lee, S. W., Jeong, Y. C., & Kim, Y. H. (2016). Field test of polarization-encoded quantum key distribution using a Sagnac interferometer. Optics Express, 24(3), 2212–2220. https://doi.org/10.1364/OE.24.002212
  28. Cerf, N. J., Bourennane, M., Karlsson, A., & Gisin, N. (2002). Security of quantum key distribution using d-level systems. Physical Review Letters, 88(12), 127902. https://doi.org/10.1103/PhysRevLett.88.127902
  29. Diamanti, E., Lo, H. K., Qi, B., & Yuan, Z. (2016). Practical challenges in quantum key distribution. npj Quantum Information, 2(1), 1–12. https://doi.org/10.1038/npjqi.2016.1
  30. White, A., Chapman, J., & Milla, D. (2022). Quantum internet: Future backbone for distributed quantum computing. Nature Communications, 13(1), 7271. https://doi.org/10.1038/s41467-022-34986-1
  31. Pirandola, S., Laurenza, R., Ottaviani, C., & Banchi, L. (2017). Fundamental limits of repeaterless quantum communications. Nature Communications, 8, 15043. https://doi.org/10.1038/ncomms15043
  32. Tang, Y. L., Yin, H. L., Chen, S. J., Liu, Y., Zhang, W. J., Jiang, X., ... & Pan, J. W. (2014). Measurement-device-independent quantum key distribution over untrustful metropolitan network. Physical Review X, 6(1), 011024. https://doi.org/10.1103/PhysRevX.6.011024
  33. Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., ... & Miki, S. (2011). Field test of quantum key distribution in the Tokyo QKD network. Optics Express, 19(11), 10387–10409. https://doi.org/10.1364/OE.19.010387
  34. Yuan, Z. L., Shields, A. J., & Dynes, J. F. (2018). Quantum key distribution over 421 km of standard telecom fiber. Nature Photonics, 12, 400–405. https://doi.org/10.1038/s41566-018-0192-4
  35. Liao, S. K., Cai, W. Q., Liu, W. Y., Zhang, L., Li, Y., Ren, J. G., ... & Pan, J. W. (2017). Satellite-to-ground quantum key distribution. Nature, 549, 43–47. https://doi.org/10.1038/nature23655
  36. Bedington, R., Arrazola, J. M., & Ling, A. (2017). Progress in satellite quantum key distribution. npj Quantum Information, 3(1), 1–13. https://doi.org/10.1038/s41534-017-0031-5
  37. Renner, R. (2008). Security of quantum key distribution. International Journal of Quantum Information, 6(01), 1–127. https://doi.org/10.1142/S0219749908003256
  38. Takesue, H., Sasaki, T., Tamaki, K., & Koashi, M. (2015). Experimental quantum key distribution without monitoring signal disturbance. Nature Photonics, 9, 827–831. https://doi.org/10.1038/nphoton.2015.232
  39. Lucamarini, M., Roberts, G. L., Dynes, J. F., & Shields, A. J. (2018). Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature, 557, 400–403. https://doi.org/10.1038/s41586-018-0066-6
  40. Zou, X., Qian, L., & Tang, Y. (2020). Quantum key distribution networks in metropolitan areas: A review. IEEE Access, 8, 90225–90241. https://doi.org/10.1109/ACCESS.2020.2994524
  41. Diamanti, E., Lo, H. K., Qi, B., & Yuan, Z. (2016). Practical challenges in quantum key distribution. npj Quantum Information, 2, 16025. https://doi.org/10.1038/npjqi.2016.25
  42. Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, J., Boxleitner, W., ... & Zeilinger, A. (2009). The SECOQC quantum key distribution network in Vienna. New Journal of Physics, 11(7), 075001. https://doi.org/10.1088/1367-2630/11/7/075001
  43. Lucamarini, M., Yuan, Z. L., Dynes, J. F., & Shields, A. J. (2015). Efficient decoy-state quantum key distribution with quantified security. Optics Express, 23(7), 8372–8391. https://doi.org/10.1364/OE.23.008372
  44. Wang, S., Chen, W., Yin, Z. Q., Li, H. W., He, D. Y., Zhou, Z., ... & Han, Z. F. (2014). Field and long-term demonstration of a wide area quantum key distribution network. Optics Express, 22(18), 21739–21756. https://doi.org/10.1364/OE.22.021739
  45. Guan, J. Y., Liu, W. Y., Li, Y. H., Liao, S. K., Cai, W. Q., Yin, J., ... & Pan, J. W. (2021). Quantum key distribution on a network of ground stations and satellites. Nature Photonics, 15(8), 617–622. https://doi.org/10.1038/s41566-021-00835-1
  46. Elkouss, D., Leverrier, A., Alleaume, R., & Boutros, J. J. (2009). Efficient reconciliation protocol for discrete-variable quantum key distribution. IEEE Transactions on Information Theory, 55(10), 4678–4685. https://doi.org/10.1109/TIT.2009.2025545
  47. Zhang, Z., Ding, Y., & Zhao, Q. (2020). Machine learning-enhanced post-processing in quantum key distribution. Quantum Science and Technology, 5(4), 045013. https://doi.org/10.1088/2058-9565/aba315
  48. Korzh, B., Lim, C. C. W., Houlmann, R., Gisin, N., Li, M. J., Nolan, D., ... & Zbinden, H. (2015). Provably secure and practical quantum key distribution over 307 km of optical fibre. Nature Photonics, 9(3), 163–168. https://doi.org/10.1038/nphoton.2014.327
  49. Tamaki, K., Lo, H. K., Fung, C. H. F., & Qi, B. (2014). Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Physical Review A, 90(5), 052314. https://doi.org/10.1103/PhysRevA.90.052314
  50. Yin, H. L., Fu, Y., Tang, Y. L., Liu, Y., Chen, S. J., Xie, Y., ... & Pan, J. W. (2016). Measurement-device-independent quantum key distribution over a 404 km optical fiber. Physical Review Letters, 117(19), 190501. https://doi.org/10.1103/PhysRevLett.117.190501
  51. Takeoka, M., Guha, S., & Wilde, M. M. (2014). Fundamental rate-loss tradeoff for optical quantum key distribution. Nature Communications, 5, 5235. https://doi.org/10.1038/ncomms6235
  52. Cao, X. Y., Yu, Z. W., & Wang, X. B. (2015). Improving the key rate of measurement-device-independent quantum key distribution with heralded single-photon sources. Physical Review A, 92(2), 022336. https://doi.org/10.1103/PhysRevA.92.022336
  53. Boaron, A., Boso, G., Rusca, D., Vulliez, C., Autebert, C., Caloz, M., ... & Zbinden, H. (2018). Secure quantum key distribution over 421 km of optical fiber. Physical Review Letters, 121(19), 190502. https://doi.org/10.1103/PhysRevLett.121.190502
  54. Lucamarini, M., Yuan, Z. L., Dynes, J. F., & Shields, A. J. (2018). Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature, 557(7705), 400–403. https://doi.org/10.1038/s41586-018-0066-6
  55. Pirandola, S., Laurenza, R., Ottaviani, C., & Banchi, L. (2017). Fundamental limits of repeaterless quantum communications. Nature Communications, 8, 15043. https://doi.org/10.1038/ncomms15043
  56. Tamaki, K., Curty, M., Kato, G., Lo, H. K., & Azuma, K. (2018). Loss-tolerant quantum cryptography with imperfect sources. Physical Review A, 97(2), 022308. https://doi.org/10.1103/PhysRevA.97.022308
  57. Sidhu, J. S., Kok, P., Oi, D. K. L., & Brougham, T. (2021). Finite-size effects in practical quantum key distribution. Quantum Science and Technology, 6(4), 045012. https://doi.org/10.1088/2058-9565/ac1e7c
  58. Zhang, Y., Yu, Z. W., & Wang, X. B. (2017). Semidefinite programming for device-independent quantum key distribution. Physical Review A, 95(4), 042309. https://doi.org/10.1103/PhysRevA.95.042309
  59. Curty, M., Xu, F., Cui, C., Lim, C. C. W., Tamaki, K., & Lo, H. K. (2019). Simple security analysis of quantum key distribution. npj Quantum Information, 5, 15. https://doi.org/10.1038/s41534-019-0124-4
  60. Laudenbach, F., Pacher, C., Fung, C. H. F., Poppe, A., Peev, M., Schrenk, B., ... & Huber, M. (2018). Continuous-variable quantum key distribution with Gaussian modulation—the theory of practical implementations. Advanced Quantum Technologies, 1(1), 1800011. https://doi.org/10.1002/qute.201800011
  61. Upadhyay, P., & Kumar, A. (2022). Satellite-based quantum key distribution: A survey. Optical Fiber Technology, 69, 102898. https://doi.org/10.1016/j.yofte.2021.102898
  62. Lo, H. K., Curty, M., & Qi, B. (2012). Measurement-device-independent quantum key distribution. Physical Review Letters, 108(13), 130503. https://doi.org/10.1103/PhysRevLett.108.130503
  63. Yin, H. L., Chen, T. Y., Yu, Z. W., Liu, H., You, L. X., Zhou, Y. H., ... & Pan, J. W. (2016). Measurement-device-independent quantum key distribution over a 404 km optical fiber. Physical Review Letters, 117(19), 190501. https://doi.org/10.1103/PhysRevLett.117.190501
  64. Vedovato, F., Agnesi, C., Scriminich, F., Santamato, A., Calarco, T., & Vallone, G. (2022). Experimental measurement-device-independent quantum key distribution with imperfect detectors. Quantum Science and Technology, 7(4), 045004. https://doi.org/10.1088/2058-9565/ac81b5
  65. Jennewein, T., & Higgins, B. (2013). The quantum space race. Physics World, 26(3), 52–56. https://doi.org/10.1088/2058-7058/26/3/36
  66. Hughes, R. J., Nordholt, J. E., Derkacs, D., & Peterson, C. G. (2002). Practical free-space quantum key distribution over 10 km in daylight and at night. New Journal of Physics, 4, 43. https://doi.org/10.1088/1367-2630/4/1/343
  67. Lucio-Martinez, I., Chan, P., Mo, X., Hosier, S., & Tittel, W. (2009). Proof-of-concept of real-world quantum key distribution with quantum frames. New Journal of Physics, 11(9), 095001. https://doi.org/10.1088/1367-2630/11/9/095001
  68. Brassard, G., & Raymond-Robichaud, P. (2018). Can quantum mechanics be considered complete? The European Physical Journal D, 72, 229. https://doi.org/10.1140/epjd/e2018-90257-3
  69. Chen, Y. A., Zhang, Q., Chen, T. Y., Cai, W. Q., Liao, S. K., Zhang, J., ... & Pan, J. W. (2021). An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature, 589(7841), 214–219. https://doi.org/10.1038/s41586-020-03093-8
  70. Liao, S. K., Cai, W. Q., Liu, W. Y., Zhang, L., Li, Y., Ren, J. G., ... & Pan, J. W. (2017). Satellite-to-ground quantum key distribution. Nature, 549(7670), 43–47. https://doi.org/10.1038/nature23655
  71. Lucamarini, M., Yuan, Z. L., Dynes, J. F., & Shields, A. J. (2018). Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature, 557(7705), 400–403. https://doi.org/10.1038/s41586-018-0066-6
  72. Qi, B., Lougovski, P., Pooser, R., Grice, W., & Bobrek, M. (2015). Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection. Physical Review X, 5(4), 041009. https://doi.org/10.1103/PhysRevX.5.041009
  73. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., & Diamanti, E. (2013). Experimental demonstration of long-distance continuous-variable quantum key distribution. Nature Photonics, 7(5), 378–381. https://doi.org/10.1038/nphoton.2013.63
  74. Usenko, V. C., & Filip, R. (2016). Trusted noise in continuous-variable quantum key distribution: A threat and a defense. Entropy, 18(1), 20. https://doi.org/10.3390/e18010020
  75. Pirandola, S., Laurenza, R., Ottaviani, C., & Banchi, L. (2017). Fundamental limits of repeaterless quantum communications. Nature Communications, 8, 15043. https://doi.org/10.1038/ncomms15043
  76. Bedington, R., Arrazola, J. M., & Ling, A. (2017). Progress in satellite quantum key distribution. npj Quantum Information, 3, 30. https://doi.org/10.1038/s41534-017-0031-5
  77. Bacco, D., Da Lio, B., Sanzaro, M., & Oxenløwe, L. K. (2019). Boosting the secret key rate in a shared quantum and classical fibre communication system. Communications Physics, 2, 140. https://doi.org/10.1038/s42005-019-0246-6
  78. Zhuang, Q., Zhang, Z., Preskill, J., & Shapiro, J. H. (2020). Physical-layer authentication over quantum channels using classical keys. Nature Communications, 11, 2908. https://doi.org/10.1038/s41467-020-16688-7
  79. Xu, F., Curty, M., Qi, B., & Lo, H. K. (2020). Practical aspects of measurement-device-independent quantum key distribution. npj Quantum Information, 6, 82. https://doi.org/10.1038/s41534-020-00320-7
  80. Li, Y. H., Liao, S. K., Tang, Y. L., Zhang, Q., & Pan, J. W. (2021). Quantum network for future information infrastructure. National Science Review, 8(10), nwab113. https://doi.org/10.1093/nsr/nwab113
  81. Diamanti, E., & Lo, H. K. (2016). Quantum cryptography with continuous variables: A review. Reports on Progress in Physics, 80(1), 016001. https://doi.org/10.1088/1361-6633/80/1/016001
  82. Ma, X., Qi, B., Zhao, Y., & Lo, H. K. (2005). Practical decoy state for quantum key distribution. Physical Review A, 72(1), 012326. https://doi.org/10.1103/PhysRevA.72.012326
  83. Cai, Y., Zhou, Y., Yin, Z. Q., & Chen, Z. B. (2021). Entanglement-based quantum communication with atomic ensembles. Nature Reviews Physics, 3, 570–588. https://doi.org/10.1038/s42254-021-00324-4
  84. Andersen, U. L., Neergaard-Nielsen, J. S., van Loock, P., & Furusawa, A. (2015). Hybrid discrete- and continuous-variable quantum information. Nature Physics, 11(9), 713–719. https://doi.org/10.1038/nphys3410
  85. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., & Ribordy, G. (2006). Trojan-horse attacks on quantum-key-distribution systems. Physical Review A, 73(2), 022320. https://doi.org/10.1103/PhysRevA.73.022320
  86. Tang, Z., Liao, Z., Yin, H., et al. (2016). Source attack immunity in quantum key distribution with untrusted sources. Physical Review A, 94(3), 032317. https://doi.org/10.1103/PhysRevA.94.032317
  87. Curty, M., Ma, X., & Qi, B. (2010). Passive decoy-state quantum key distribution with practical light sources. Physical Review A, 81(2), 022310. https://doi.org/10.1103/PhysRevA.81.022310
  88. Li, Y., Zeng, P., Liu, Y., et al. (2023). Metropolitan quantum cryptography network with quantum-classical multiplexing. Light: Science & Applications, 12(1), 1–8. https://doi.org/10.1038/s41377-022-01030-5
  89. Lucamarini, M., Fröhlich, B., Dynes, J. F., & Shields, A. J. (2015). Secure quantum key distribution with imperfect devices. Nature Photonics, 9(6), 362–367. https://doi.org/10.1038/nphoton.2015.76
  90. Pirandola, S. (2019). End-to-end capacities of a quantum communication network. Communications Physics, 2, 51. https://doi.org/10.1038/s42005-019-0147-8
  91. Nam, S. W., Korzh, B., et al. (2022). Ultra-low-noise superconducting nanowire single-photon detectors for quantum communication. Nature Communications, 13(1), 1–9. https://doi.org/10.1038/s41467-022-30537-z
  92. Bunandar, D., Lentine, A. L., Lee, C., et al. (2018). Metropolitan quantum key distribution with silicon photonics. Physical Review X, 8(2), 021009. https://doi.org/10.1103/PhysRevX.8.021009
  93. Yuan, Z. L., Dynes, J. F., & Shields, A. J. (2010). Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography. Applied Physics Letters, 98(23), 231104. https://doi.org/10.1063/1.3442394
  94. Shibata, H., Honjo, T., & Tamaki, K. (2014). Efficient detection of quantum key distribution using superconducting nanowire single-photon detectors. Optics Letters, 39(17), 5078–5081. https://doi.org/10.1364/OL.39.005078
  95. Kumar, R., Qin, H., & Alléaume, R. (2015). Coexistence of continuous variable QKD with intense DWDM classical channels. New Journal of Physics, 17(4), 043027. https://doi.org/10.1088/1367-2630/17/4/043027
  96. Wehner, S., Elkouss, D., & Hanson, R. (2018). Quantum internet: A vision for the road ahead. Science, 362(6412), eaam9288. https://doi.org/10.1126/science.aam9288
  97. Li, W., Zhu, F., Guan, J. Y., et al. (2020). Experimental quantum key distribution network with software-defined networking. npj Quantum Information, 6, 1–6. https://doi.org/10.1038/s41534-020-0253-2
  98. Papernov, A., Zeilinger, A., et al. (2022). Entanglement-based quantum key distribution over 400 km fiber. Physical Review Letters, 128(18), 180502. https://doi.org/10.1103/PhysRevLett.128.180502
  99. Bai, X., Ma, H. Q., Jiang, C., et al. (2023). High-rate field test of satellite-to-ground QKD. Nature, 617(7960), 74–79. https://doi.org/10.1038/s41586-023-05997-y
  100. Wang, S., Chen, W., Yin, Z. Q., et al. (2023). Toward satellite-based global QKD: Experimental progress and challenges. npj Quantum Information, 9, 12. https://doi.org/10.1038/s41534-023-00723-9

Downloads

Download data is not yet available.

Most read articles by the same author(s)