Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 2 No. 2 (2025): International Journal for Autism Challenges & Solution

Network Pharmacology and Molecular Docking Reveal Multi-Target Mechanisms of Luteolin Against Autism Spectrum Disorder

  • Abdul Majid Bhat
  • Ramesa Shafi Bhat
Submitted
November 24, 2025
Published
2025-12-27

Abstract

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition influenced by genetic, metabolic, and neuroinflammatory mechanisms. Luteolin, a dietary flavonoid with anti-inflammatory and neuroprotective properties, has recently gained attention as a potential adjunct therapy for ASD. However, its molecular mechanisms remain insufficiently explored. This study employed a network pharmacology framework to identify putative molecular targets of luteolin in ASD. Targets were predicted using SwissTargetPrediction and intersected with ASD-related genes retrieved from GeneCards (relevance score >1). Protein–protein interaction (PPI) networks were constructed using STRING and analyzed via Cytoscape and CytoHubba to determine key hub genes. Functional enrichment was performed using GO and KEGG analyses. Representative hub proteins including CA4, MET, DRD4, AKT1, and IGF1R from major ASD-related pathways were further validated through CB-Dock molecular docking. A total of 39 overlapping targets were identified. Hub nodes (AKT1, SRC, ESR1, GSK3B, PTGS2, MMP9, PARP1, IGF1R, AR, ESR2) were strongly enriched in pathways central to ASD pathology, including nitrogen metabolism, dopaminergic synapse, HIF-1 signaling, adherens junction, and PI3K–Akt signaling. Molecular docking confirmed strong ligand–protein interactions, with binding energies ranging from −7.7 to −9.8 kcal/mol, indicating favorable affinity particularly with AKT1 (−9.8 kcal/mol), DRD4 (−8.9 kcal/mol), and IGF1R (−8.3 kcal/mol). This integrative analysis suggests that luteolin exerts multitarget effects relevant to ASD through modulation of synaptic signaling, oxidative stress, inflammatory pathways, and excitatory/inhibitory neurotransmission. These findings provide mechanistic support for luteolin as a potential complementary therapeutic agent for ASD and justify further in clinical investigations.

References

  1. Mottron, L.; Bzdok, D. Autism spectrum heterogeneity: Fact or artifact? Mol. Psychiatry 2020, 25, 3178–3185.
  2. Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global prevalence of autism: A systematic review update. Autism Res. 2022, 15, 778–790.
  3. Sauer AK, Stanton JE, Hans S, et al. Autism Spectrum Disorders: Etiology and Pathology. In: Grabrucker AM, editor. Autism Spectrum Disorders [Internet]. Brisbane (AU): Exon Publications; 2021 Aug 20. Chapter 1. Available from: https://www.ncbi.nlm.nih.gov/books/NBK573613/ doi: 10.36255/exonpublications.autismspectrumdisorders.2021.etiology
  4. Cai JL, Lu JQ, Lu G , “Autism spectrum disorder related tcm symptoms and tcm herbs prescriptions: a systematic review and meta-analysis,” North American Journal of Medicine and Science, vol. 8, no. 1, 2015.
  5. Bang M, Lee SH , Cho SH et al., “Herbal medicine treatment for children with autism spectrum disorder: a systematic review,” Evidence-based Complementary and Alternative Medicine: eCAM,vol. 2017, Article ID 8614680,2017.
  6. Zhang, R, X. Zhu, H. Bai, and K. Ning, “Network pharmacology databases for traditional Chinese medicine: review and assessment,” Frontiers in Pharmacology, vol. 10, p. 123, 2019.
  7. Harwood M, nielewska-Nikiel B, Borzelleca JF, Flamm GW, Williams GM, Lines TC. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem Toxicol 2007; 45: 2179–2205.
  8. Kawanishi S, Oikawa S, Murata M. Evaluation for safety of antioxidant chemopreventive agents. Antioxid Redox Signal 2005; 7: 1728–1739. [DOI] [PubMed] [Google Scholar]
  9. Li L, Gu L, Chen Z, Wang R, Ye J, Jiang H. Toxicity study of ethanolic extract of Chrysanthemum morifolium in rats. J Food Sci 2010; 75: T105–T109.
  10. Jager AK, Saaby L. Flavonoids and the CNS. Molecules 2011; 16: 1471–1485.
  11. Savino, R.; Medoro, A.; Ali, S.; Scapagnini, G.; Maes, M.; Davinelli, S. The Emerging Role of Flavonoids in Autism Spectrum Disorder: A Systematic Review. J. Clin. Med. 2023, 12, 3520. https:// doi.org/10.3390/jcm12103520
  12. T. Ling, W. Wang, C. Hu et al., “[Effects of orchinol on invasion, migration and Wnt3a/β-catenin signaling pathway of human gastric cancer SGC-7901 cells],” Zhongguo Zhongyao Zazhi, vol. 43, no. 23, pp. 4718–4723, 2018.
  13. M. B. Alam, N. S. Chowdhury, M. H. Sohrab, M. S. Rana, C. M. Hasan, and S.-H. Lee, “Cerevisterol alleviates inflammation via suppression of MAPK/NF-κB/AP-1 and activation of the Nrf2/HO-1 signaling cascade,” Biomolecules, vol. 10, no. 2, p. 199, 2020.
  14. P. Srikantha and M. H. Mohajeri, “ e possible role of the microbiota-gut-brain-Axis in autism spectrum disorder,” International Journal of Molecular Sciences, vol. 20, no. 9, p. 2115, 2019.
  15. K. Sowndhararajan, P. Deepa, M. Kim, S. J. Park, and S. Kim, “An overview of neuroprotective and cognitive enhancement properties of lignans from Schisandra chinensis,” Biomedicine & Pharmacotherapy, vol. 97, pp. 958–968, 2018.
  16. Khlood Mohammed Mehdar, Saad Misfer Alqahtani. Protective Effects of Luteolin on a Rat Model of Autism: An Analysis of Luteolin Flavonoid’s Effects on Rat Behaviour, Histology and Cerebellar Pathology. Int. J. Pharmacol. 2024, 20(6), 942–955. https://doi.org/10.3923/ijp.2024.942.955
  17. Tsilioni I, Taliou A, Francis K, Theoharides TC. Children with autism spectrum disorders, who improved with a luteolin-containing dietary formulation, show reduced serum levels of TNF and IL-6. Transl Psychiatry. 2015 Sep 29;5(9):e647. doi: 10.1038/tp.2015.142.
  18. El-Ansary, A.K., Bacha, A.B. & Kotb, M. Etiology of autistic features: the persisting neurotoxic effects of propionic acid. J Neuroinflammation 9, 74 (2012). https://doi.org/10.1186/1742-2094-9-74
  19. Dian Eka A. F. Ningrum1, Mohamad Amin, Betty Lukiati. Bioinformatics Approach Based Research of Profile Protein Carbonic Anhydrase II Analysis as a Potential Candidate Cause Autism for The Variation of Learning Subjects Biotechnology. JURNAL PENDIDIKAN BIOLOGI INDONESIA VOLUME 3 NOMOR 1 TAHUN 2017 (Halaman 28-35)
  20. Sindi IA. Implications of Cell Adhesion Molecules in Autism Spectrum Disorder Pathogenesis. J Microsc Ultrastruct. 2022 Aug 4;11(4):199-205. doi: 10.4103/jmau.jmau_15_22.
  21. Shen L., Weber C.R., Raleigh D.R., Yu D., Turner J.R. Tight Junction Pore and Leak Pathways: A Dynamic Duo. Annu. Rev. Physiol. 2011;73:283–309. doi: 10.1146/annurev-physiol-012110-142150.
  22. Dörfel M.J., Westphal J.K., Bellmann C., Krug S.M., Cording J., Mittag S., Tauber R., Fromm M., Blasig I.E., Huber O. CK2-dependent phosphorylation of occludin regulates the interaction with ZO-proteins and tight junction integrity. Cell Commun. Signal. 2013;11:40. doi: 10.1186/1478-811X-11-40.
  23. Al-Ayadhi L, Bhat RS, Alghamdi FA, Alhadlaq AS, El-Ansary A. Influence of Auditory Integrative Training on Casein Kinase 2 and Its Impact on Behavioral and Social Interaction in Children with Autism Spectrum Disorder. Curr Issues Mol Biol. 2023 May 15;45(5):4317-4330. doi: 10.3390/cimb45050274.
  24. Lolli, Graziano & Cozza, Giorgio & Mazzorana, Marco & Tibaldi, Elena & Cesaro, Luca & Donella-Deana, Arianna & Meggio, Flavio & Venerando, Andrea & Franchin, Cinzia & Sarno, Stefania & Battistutta, Roberto & Pinna, Lorenzo. (2012). Inhibition of Protein Kinase CK2 by Flavonoids and Tyrphostins. A Structural Insight. Biochemistry. 51. 6097-107. 10.1021/bi300531c.
  25. Vasic, V.; Jones, M.S.O.; Haslinger, D.; Knaus, L.S.; Schmeisser, M.J.; Novarino, G.; Chiocchetti, A.G. Translating the Role of mTOR- and RAS-Associated Signalopathies in Autism Spectrum Disorder: Models, Mechanisms and Treatment. Genes 2021, 12, 1746.
  26. Réthelyi, J.M.; Vincze, K.; Schall, D.; Glennon, J.; Berkel, S. The role of insulin/IGF1 signalling in neurodevelopmental and neuropsychiatric disorders—Evidence from human neuronal cell models. Neurosci. Biobehav. Rev. 2023, 153, 105330.
  27. Robinson-Agramonte, M.L.A.; Michalski, B.; Vidal-Martinez, B.; Hernández, L.R.; Santiesteban, M.W.; Fahnestock, M. BDNF, proBDNF and IGF-1 serum levels in naïve and medicated subjects with autism. Sci. Rep. 2022, 12, 13768.
  28. Riikonen, R. Insulin-Like Growth Factors in the Pathogenesis of Neurological Diseases in Children. Int. J. Mol. Sci. 2017, 18, 2056. [Google Scholar] [CrossRef]
  29. Netchine, I.; Azzi, S.; Le Bouc, Y.; Savage, M.O. IGF1 molecular anomalies demonstrate its critical role in fetal, postnatal growth and brain development. Best practice research. Clin. Endocrinol. Metab. 2011, 25, 181–190.
  30. Haider Mohsen Kazem, Hadeel Rashid Faraj, Tariq Khudair Hussein .Genetic Analysis of Dopamine Receptors (DRD4 and DRD5) in Patients with Autism with Attention Deficit Hyperactivity Disorder (ADHD) in Thi-Qar Governorate –Iraq Journal of Bioscience and Applied Research, 2025, Vol. 11, No. 3, P.892-901 pISSN: 2356-9174, eISSN: 2356-9182
  31. Wehmuth M, Antoniuk SA, Da Silva KB, Raskinb S, Oliveira Christoff AD, et al. (2020) Dopamine DRD4 gene polymorphism as a risk factor for epilepsy in autism spectrum disorder. J Biol Med 4(1): 012-017. DOI: https://dx.doi.org/10.17352/jbm.000021
  32. Qin L, Liu W, Ma K, Wei J, Zhong P, Cho K, Yan Z. The ADHD-linked human dopamine D4 receptor variant D4.7 induces over-suppression of NMDA receptor function in prefrontal cortex. Neurobiol Dis. 2016 Nov;95:194-203. doi: 10.1016/j.nbd.2016.07.024. Epub 2016 Jul 27
  33. Shamabadi, Ahmad, Hanie Karimi, Razman Arabzadeh Bahri, Mohsen Motavaselian, and Shahin Akhondzadeh. "Emerging drugs for the treatment of irritability associated with autism spectrum disorder." Expert Opinion on Emerging Drugs 29, no. 1 (2024): 45-56.
  34. Doyle, C. A., & McDougle, C. J. (2012). Pharmacotherapy to control behavioral symptoms in children with autism. Expert Opinion on Pharmacotherapy, 13(11), 1615-1629.
  35. Wu, Wl., Gong, Xx., Qin, Zh. et al. Molecular mechanisms of excitotoxicity and their relevance to the pathogenesis of neurodegenerative diseases—an update. Acta Pharmacol Sin 46, 3129–3142 (2025). https://doi.org/10.1038/s41401-025-01576-w
  36. Tzu Yu Lin, Cheng Wei Lu, Su Jane Wang,Luteolin protects the hippocampus against neuron impairments induced by kainic acid in rats, Neuro Toxicology, Volume 55, 2016, Pages 48-57, https://doi.org/10.1016/j.neuro.2016.05.008.
  37. Vongthip W, Nilkhet S, Boonruang K, Sukprasansap M, Tencomnao T, Baek SJ. Neuroprotective mechanisms of luteolin in glutamate-induced oxidative stress and autophagy-mediated neuronal cell death. Sci Rep. 2024 Apr 2;14(1):7707. doi: 10.1038/s41598-024-57824-2. PMID: 38565590; PMCID: PMC10987666.
  38. Kawamoto EM, Vivar C, Camandola S (2012): Physiology and pathology of calcium signaling in the brain. Front Pharmacol 3:61.
  39. Akita, T., Aoto, K., Kato, M., Shiina, M., Mutoh, H., Nakashima, M., ... & Saitsu, H. (2018). De novo variants in CAMK 2A and CAMK 2B cause neurodevelopmental disorders. Annals of clinical and translational neurology, 5(3), 280-296.
  40. Küry, S., van Woerden, G. M., Besnard, T., Onori, M. P., Latypova, X., Towne, M. C., ... & Mercier, S. (2017). De novo mutations in protein kinase genes CAMK2A and CAMK2B cause intellectual disability. The American Journal of Human Genetics, 101(5), 768-788.
  41. Dwyer Bonnie K. , Veenma Danielle C. M. , Chang Kiki , Schulman Howard , Van Woerden Geeske M. Case Report: Developmental Delay and Acute Neuropsychiatric Episodes Associated With a de novo Mutation in the CAMK2B Gene (c.328G>A p.Glu110Lys) Frontiers in Pharmacology Volume 13 - 2022, DOI=10.3389/fphar.2022.794008
  42. Nardone S, Sams DS, Reuveni E, Getselter D, Oron O, Karpuj M, Elliott E (2014): DNA methylation analysis of the autistic brain reveals multiple dysregulated biological pathways. Transl Psychiatry 4:e433.
  43. Jacqueline Kaiser, Alana Risteska, Abbey G. Muller, Haoxiong Sun, Bethany Lei, Kevin Nay, Anthony R. Means, Margot A. Cousin, David H. Drewry, Jonathan S. Oakhill, Bruce E. Kemp, Anthony J. Hannan, Michael Berk, Mark A. Febbraio, Andrew L. Gundlach, Elisa L. Hill-Yardin, John W. Scott,Convergence on CaMK4: A Key Modulator of Autism-Associated Signaling Pathways in Neurons, Biological Psychiatry,Volume 97, Issue 5,2025,Pages 439-449, https://doi.org/10.1016/j.biopsych.2024.10.012.
  44. Umsumarng, S.; Dissook, S.; Arjsri, P.; Srisawad, K.; Thippraphan, P.; Sangphukieo, A.; Thongkumkoon, P.; Dejkriengkraikul, P. Inhibitory Effect of Luteolin on Spike S1 Glycoprotein-Induced Inflammation in THP-1 Cells via the ER StressInducing Calcium/CHOP/MAPK Pathway. Pharmaceuticals 2024, 17, 1402. https://doi.org/10.3390/ ph17101402
  45. Esen Yildirim Demirdöğen, Mehmet Akif Akinci, Abdullah Bozkurt, Özgür Esmeray, Fatma Betül Özgeriş, Nezahat Kurt, Neslihan Yüce, Serum hypoxia-inducible factor-1 alpha (HIF-1α) and apelin levels in children and adolescents diagnosed with autism spectrum disorder, Research in Autism Spectrum Disorders, Volume 112, 2024, 102327, https://doi.org/10.1016/j.rasd.2024.102327.
  46. Pagani, M., Barsotti, N., Bertero, A., Trakoshis, S., Ulysse, L., Locarno, A., Miseviciute, I., De Felice, A., Canella, C., Supekar, K., Galbusera, A., Menon, V., Tonini, R., Deco, G., Lombardo, M. V., Pasqualetti, M., & Gozzi, A. (2021). mTOR-related synaptic pathology causes autism spectrum disorder-associated functional hyperconnectivity. Nature communications, 12(1), 6084. https://doi.org/10.1038/s41467-021-26131-z
  47. El-Ansary A, GABA and glutamate imbalance in autism and their reversal as novel hypothesis for effective treatment strategy 2020 Autism Dev. Disord 18 3 46-63
  48. Vongthip W, Nilkhet S, Boonruang K, Sukprasansap M, Tencomnao T, Baek SJ. Neuroprotective mechanisms of luteolin in glutamate-induced oxidative stress and autophagy-mediated neuronal cell death. Sci Rep. 2024 Apr 2;14(1):7707. doi: 10.1038/s41598-024-57824-2. PMID: 38565590; PMCID: PMC10987666.
  49. Grabarczyk, M.; Justyńska, W.; Czpakowska, J.; Smolińska, E.; Bielenin, A.; Glabinski, A.; Szpakowski, P. Role of Plant Phytochemicals: Resveratrol, Curcumin, Luteolin and Quercetin in Demyelination, Neurodegeneration, and Epilepsy. Antioxidants 2024, 13, 1364. https://doi.org/10.3390/antiox13111364
  50. Enriquez-Barreto L, Morales M. The PI3K signaling pathway as a pharmacological target in Autism related disorders and Schizophrenia. Mol Cell Ther. 2016 Feb 11;4:2. doi: 10.1186/s40591-016-0047-9. PMID: 26877878; PMCID: PMC4751644.
  51. Kosillo P, Bateup HS. Dopaminergic Dysregulation in Syndromic Autism Spectrum Disorders: Insights From Genetic Mouse Models. Front Neural Circuits. 2021 Jul 23;15:700968. doi: 10.3389/fncir.2021.700968. PMID: 34366796; PMCID: PMC8343025.
  52. Baranova J, Dragunas G, Botellho MCS, Ayub ALP, Bueno-Alves R, Alencar RR, Papaiz DD, Sogayar MC, Ulrich H, Correa RG. Autism Spectrum Disorder: Signaling Pathways and Prospective Therapeutic Targets. Cell Mol Neurobiol. 2021 May;41(4):619-649. doi: 10.1007/s10571-020-00882-7. Epub 2020 May 28. PMID: 32468442; PMCID: PMC11448616.

Downloads

Download data is not yet available.

Similar Articles

11-15 of 15

You may also start an advanced similarity search for this article.