Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 2 No. 2 (2025): International Journal of Civilizations Studies & Tolerance Sciences

Food Security and GHG Knowledge Gaps in Aquaponic Grow Systems

  • Mohamed Al Nuaimi
Submitted
November 17, 2025
Published
2025-12-22

Abstract

The increasing pressures of climate change, resource scarcity, and environmental degradation necessitate a paradigm shift towards sustainable food production systems. Aquaponics, an integrated cultivation method combining aquaculture and hydroponics, emerges as a promising solution, embodying the principles of a circular economy. However, the utilisation of aquaponics, especially under changing climatic and resource-depleting conditions, as well as its contribution towards global greenhouse gas emissions, has been little discussed. Therefore, this study examines how aquaponics addresses the limitations imposed by climate change by enabling food production on non-arable lands, including urban areas, and potentially reducing greenhouse gas emissions, carbon, water, and energy footprints compared to traditional farming for equivalent yields. The study further examines technological advancements, socio-economic benefits such as localised food systems and job creation, as well as the inherent challenges and limitations of aquaponics. Likewise, innovative waste management strategies, particularly the utilisation of fish sludge as a valuable resource, are discussed and evaluated. In conclusion, if considered and utilised to its full potential, aquaponics has the potential to make a significant contribution to a more sustainable and resilient global food system in the face of growing environmental and resource constraints.

References

  1. Abbo, D., (2020). Inoculating fish sludge from aquaponics with microbes to enhance mineralisation of phosphorus. Ghent University Ghent, Belgium.
  2. Adeleke, B., Cassim, S., & Taylor, S., (2022). Pathways to low-cost aquaponic systems for sustainable livelihoods and economic development in poor communities: Defining critical success factors. Aquaculture International 30, 1575-1591. DOI: https://doi.org/10.1007/s10499-022-00865-z
  3. Al Tawaha, A. R., Megat Wahab, P. E., & Jaafar, H. Z., (2025). Optimizing Nutrient Availability in Decoupled Recirculating Aquaponic Systems for Enhanced Plant Productivity: A Mini Review. Nitrogen 6, 3. DOI: https://doi.org/10.3390/nitrogen6010003
  4. Alnuaimi, M., 2024. Aquaponic system and method of plant cultivation. Google Patents. https://patents.google.com/patent/US20240114860A1/en
  5. Alsanius, B.W., Khalil, S., & Morgenstern, R. (2017). Rooftop Aquaponics. In F. Orsini, M. Dubbeling, H. de Zeeuw, & G. Gianquinto (eds.), Rooftop Urban Agriculture. Springer International Publishing, Cham, pp. 103-112. DOI: https://doi.org/10.1007/978-3-319-57720-3_7
  6. Food & Water Watch (2009). Water Usage in Recirculating Aquaculture/Aquaponic Systems. https://extension.rwfm.tamu.edu/wp-content/uploads/sites/8/2013/10/Water-Usage-in-Recirculating-AquacultureAquaponic-Systems.pdf
  7. Terrascope (2024). Environmental Feasibility of Hydroponic and Aquaponic Systems. Terrascope. https://terrascope2024.mit.edu/?page_id=315
  8. Asadujjaman, M., Salam, M. A., Chowdhury, M. T. H., Alam, S. M. R., Albeshr, M. F., Arai, T., & Hossain, M. B. (2024). Optimizing Aquaponic Systems for Improved Food Production Efficiency in Climate-Vulnerable Coastal Regions. Aquaculture Research 2024, 9467236. DOI: https://doi.org/10.1155/are/9467236
  9. Asciuto, A., Schimmenti, E., Cottone, C., & Borsellino, V. (2019). A financial feasibility study of an aquaponic system in a Mediterranean urban context. Urban Forestry & Urban Greening 38, 397-402. DOI: https://doi.org/10.1016/j.ufug.2019.02.001
  10. Atique, F., Lindholm-Lehto, P., & Pirhonen, J. (2022). Is aquaponics beneficial in terms of fish and plant growth and water quality in comparison to separate recirculating aquaculture and hydroponic systems? Water 14, 1447. DOI: https://doi.org/10.3390/w14091447
  11. Babatunde, A., Deborah, R.-A., Gan, M., & Simon, T. (2023). Economic viability of a small scale low-cost aquaponic system in South Africa. Journal of Applied Aquaculture 35, 285-304. DOI: https://doi.org/10.1080/10454438.2021.1958729
  12. Bano, M. (2024). Farm-to-Table: Exploring the Benefits and Challenges of Local Food Systems. Frontiers in Agriculture 1, 390-415.
  13. Behr, L.M., Hu, A. H., & Heck, P. (2025). Assessing the environmental impact and advantages of a commercial aquaponic system in Taiwan through life cycle assessment. Aquaculture 595, 741589. DOI: https://doi.org/10.1016/j.aquaculture.2024.741589
  14. Belete, T. & Yadete, E. (2023). Effect of mono cropping on soil health and fertility management for sustainable agriculture practices: A review. Plant Science, 11, 192-197. DOI: https://doi.org/10.11648/j.jps.20231106.13
  15. Boone, W. (2022). Dual-processed anaerobic and aerobic remineralization of fish manure for hydroponic fertilizer. [Master’s Thesis] Cornell University)
  16. Cammies, C., Mytton, D., & Crichton, R. (2021). Exploring economic and legal barriers to commercial aquaponics in the EU through the lens of the UK and policy proposals to address them. Aquaculture International, 29, 1245-1263. DOI: https://doi.org/10.1007/s10499-021-00690-w
  17. Chandramenon, P., Gascoyne, A., Naughton, L., & Tchuenbou-Magaia, F. (2024). Making Aquaponics More Sustainable Using Worms and Water Replenishment Combined with a Sensing- and IoT-Based Monitoring System. Applied Sciences 14, 8516. DOI: https://doi.org/10.3390/app14188516
  18. Chavhan, N., Bhattad, R., Khot, S., Patil, S., Pawar, A., Pawar, T., & Gawli, P. (2025). APAH: An autonomous IoT driven real-time monitoring system for Industrial wastewater. Digital Chemical Engineering, 14, 100217. DOI: https://doi.org/10.1016/j.dche.2025.100217
  19. Chen, P., Zhu, G., Kim, H.-J., Brown, P.B., & Huang, J.-Y. (2020). Comparative life cycle assessment of aquaponics and hydroponics in the Midwestern United States. Journal of Cleaner Production 275, 122888. DOI: https://doi.org/10.1016/j.jclepro.2020.122888
  20. Choudhury, A., Lepine, C., & Good, C. (2023). Methane and hydrogen sulfide production from the anaerobic digestion of fish sludge from recirculating aquaculture systems: effect of varying initial solid concentrations. Fermentation, 9, 94. DOI: https://doi.org/10.3390/fermentation9020094
  21. Cristiano, S., Baarset, H., Bruckner, C., Johansen, J., & Pastres, R. (2022). Innovative options for the reuse and valorisation of aquaculture sludge and fish mortalities: Sustainability evaluation through Life-Cycle Assessment. Journal of Cleaner Production, 352, 131613. DOI: https://doi.org/10.1016/j.jclepro.2022.131613
  22. Delaide, B., Goddek, S., Keesman, K., & Jijakli, H. (2018). A methodology to quantify aerobic and anaerobic sludge digestion performances for nutrient recycling in aquaponics. Biotechnologie, Agronomie, Société et Environnement, 22. DOI: https://doi.org/10.25518/1780-4507.16406
  23. Delaide, B., Monsees, H., Gross, A., & Goddek, S. (2019). Aerobic and Anaerobic Treatments for Aquaponic Sludge Reduction and Mineralisation. In S. Goddek, A Joyce, B. Kotzen, & G. M. Burnell, (eds.), Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future. Springer International Publishing, Cham, pp. 247-266. DOI: https://doi.org/10.1007/978-3-030-15943-6_10
  24. Dewi, T., Risma, P., Oktarina, Y., Dwijayanti, S., Mardiyati, E.N., Sianipar, A.B., Hibrizi, D.R., Azhar, M.S., & Linarti, D. (2025). Smart integrated aquaponics system: Hybrid solar-hydro energy with deep learning forecasting for optimized energy management in aquaculture and hydroponics. Energy for Sustainable Development, 85, 101683. DOI: https://doi.org/10.1016/j.esd.2025.101683
  25. Egyir, I. S., Oku-Afari, K., & Boakye, A. A. (2023). Exploring aquaponics for youth employment: An experience from Ghana. Research Square DOI: https://doi.org/10.21203/rs.3.rs-3098810/v1
  26. En, G. W. W., & Yii, K.-J. (2023). Sustainable Agriculture through Innovation and Entrepreneurship: A Case Study on Aquaponic 3.0 Integration for Resource Optimization and Community Engagement. ICB 2023, 118.
  27. Ezenarro, J. J., Ackerman, T. N., Pelissier, P., Combot, D., Labbé, L., Muñoz-Berbel, X., Mas, J., Del Campo, F. J., & Uria, N. (2020). Integrated photonic system for early warning of cyanobacterial blooms in aquaponics. Analytical Chemistry, 93, 722-730. DOI: https://doi.org/10.1021/acs.analchem.0c00935
  28. Gamage, A., Gangahagedara, R., Subasinghe, S., Gamage, J., Guruge, C., Senaratne, S., Randika, T., Rathnayake, C., Hameed, Z., Madhujith, T., & Merah, O. (2024). Advancing sustainability: The impact of emerging technologies in agriculture. Current Plant Biology, 40, 100420. DOI: https://doi.org/10.1016/j.cpb.2024.100420
  29. Ghamkhar, R., Hartleb, C., Rabas, Z., & Hicks, A. (2022). Evaluation of environmental and economic implications of a cold‐weather aquaponic food production system using life cycle assessment and economic analysis. Journal of Industrial Ecology, 26, 862-874. DOI: https://doi.org/10.1111/jiec.13230
  30. Gillani, S. A., Abbasi, R., Martinez, P., & Ahmad, R. (2023). Comparison of Energy-use Efficiency for Lettuce Plantation under Nutrient Film Technique and Deep-Water Culture Hydroponic Systems. Procedia Computer Science, 217, 11-19. DOI: https://doi.org/10.1016/j.procs.2022.12.197
  31. Goddek, S., Delaide, B., Mankasingh, U., Ragnarsdottir, K. V., Jijakli, H., & Thorarinsdottir, R. (2015). Challenges of sustainable and commercial aquaponics. Sustainability, 7, 4199-4224. DOI: https://doi.org/10.3390/su7044199
  32. Goddek, S., Joyce, A., Kotzen, B., & Dos-Santos, M. (2019). Aquaponics and Global Food Challenges. In S. Goddek, A. Joyce, B. Kotzen, & G. M. Burnell (eds.), Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future. Springer International Publishing, Cham, pp. 3-17. DOI: https://doi.org/10.1007/978-3-030-15943-6_1
  33. Gomiero, T., Paoletti, M. G., & Pimentel, D. (2008). Energy and environmental issues in organic and conventional agriculture. Critical Reviews in Plant Sciences, 27, 239-254. DOI: https://doi.org/10.1080/07352680802225456
  34. Gott, J., Morgenstern, R., & Turnšek, M. (2019). Aquaponics for the Anthropocene: Towards a ‘Sustainability First’ Agenda. In S. Goddek, A. Joyce, B. Kotzen, G. M. Burnell, (eds.), Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future. Springer International Publishing, Cham, pp. 393-432. DOI: https://doi.org/10.1007/978-3-030-15943-6_16
  35. Greenfeld, A., Becker, N., McIlwain, J., Fotedar, R., & Bornman, J. F. (2019). Economically viable aquaponics? Identifying the gap between potential and current uncertainties. Reviews in Aquaculture, 11, 848-862. DOI: https://doi.org/10.1111/raq.12269
  36. Heo, J., Baek, J., Subah, Z., & Ryu, J. H. (2024). Evaluating crop growth between hydroponics and aquaponics with different light inputs. Frontiers in Horticulture 3 - 2024. DOI: https://doi.org/10.3389/fhort.2024.1413224
  37. Hochman, G., Hochman, E., Naveh, N., & Zilberman, D. (2018). The synergy between aquaculture and hydroponics technologies: The case of lettuce and tilapia. Sustainability, 10, 3479. DOI: https://doi.org/10.3390/su10103479
  38. Ibrahim, L. A., Shaghaleh, H., El-Kassar, G. M., Abu-Hashim, M., Elsadek, E. A., & Alhaj Hamoud, Y. (2023). Aquaponics: A Sustainable Path to Food Sovereignty and Enhanced Water Use Efficiency. Water 15, 4310. DOI: https://doi.org/10.3390/w15244310
  39. Jiang, Y., Arafat, Y., Letuma, P., Ali, L., Tayyab, M., Waqas, M., Li, Y., Lin, W., Lin, S., & Lin, W. (2019). Restoration of long-term monoculture degraded tea orchard by green and goat manures applications system. Sustainability, 11, 1011. DOI: https://doi.org/10.3390/su11041011
  40. Johnson, G. E., Buzby, K. M., Semmens, K. J., Waterland, N. L. (2017). Year-round lettuce (Lactuca sativa L.) production in a flow-through aquaponic system. Journal of Agricultural Science, 9, 75-84. DOI: https://doi.org/10.5539/jas.v9n1p75
  41. Jose, J. A. C., Chu, T .S. C., Jacob, L. H. M., Rulloda, L. A. R., Ambrosio, A. Z. M. H., Sy, A. C., Vicerra, R. R. P., Choi, A. E. S., & Dadios, E. P. (2025). An automated small-scale aquaponics system design using a closed loop control. Environmental Challenges, 19, 101127. DOI: https://doi.org/10.1016/j.envc.2025.101127
  42. Joyce, A., Goddek, S., Kotzen, B., & Wuertz, S. (2019). Aquaponics: Closing the Cycle on Limited Water, Land and Nutrient Resources. In S. Goddek, A. Joyce, B. Kotzen, G. M. Burnell, (eds.), Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future. Springer International Publishing, Cham, pp. 19-34. DOI: https://doi.org/10.1007/978-3-030-15943-6_2
  43. Kakraliya, S. K., Jat, H. S., Singh, I., Gora, M. K., Kakraliya, M., Bijarniya, D., Sharma, P. C., & Jat, M. L. (2022). Energy and economic efficiency of climate-smart agriculture practices in a rice-wheat cropping system of India. Scientific Reports, 12, 8731. DOI: https://doi.org/10.1038/s41598-022-12686-4
  44. Kalvakaalva, R., Prior, S. A., Smith, M., Runion, G. B., Ayipio, E., Blanchard, C., Wall, N., Wells, D., Hanson, T. R., & Higgins, B. T. (2022). Direct Greenhouse Gas Emissions From a Pilot-Scale Aquaponics System. Journal of the ASABE, 65, 1211-1223. DOI: https://doi.org/10.13031/ja.15215
  45. Kluczkovski, A., Ehgartner, U., Pugh, E., Hockenhull, I., Heaps‐Page, R., Williams, A., Thomas, J.M., Doherty, B., Bryant, M., & Denby, K. (2024). Aquaponics in schools: Hands‐on learning about healthy eating and a healthy planet. Nutrition Bulletin, 49, 327-344. DOI: https://doi.org/10.1111/nbu.12689
  46. Kok, C. L., Kusuma, I. M. B. P., Koh, Y. Y., Tang, H., & Lim, A. B. (2024). Smart Aquaponics: An Automated Water Quality Management System for Sustainable Urban Agriculture. Electronics, 13, 820. DOI: https://doi.org/10.3390/electronics13050820
  47. König, B., Janker, J., Reinhardt, T., Villarroel, M., & Junge, R. (2018). Analysis of aquaponics as an emerging technological innovation system. Journal of Cleaner Production 180, 232-243. DOI: https://doi.org/10.1016/j.jclepro.2018.01.037
  48. Kotzen, B., Emerenciano, M. G. C., Moheimani, N., & Burnell, G. M. (2019). Aquaponics: Alternative Types and Approaches. In S. Goddek, A Joyce, B. Kotzen, & G. M. Burnell, (eds.), Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future. Springer International Publishing, Cham, pp. 301-330. DOI: https://doi.org/10.1007/978-3-030-15943-6_12
  49. Le, A. T., Wang, Y., Wang, L., Ta, V. C., & Li, D. (2020). Numerical investigation on a low energy-consumption heating method for recirculating aquaponic systems. Computers and Electronics in Agriculture, 169, 105210. DOI: https://doi.org/10.1016/j.compag.2019.105210
  50. Li, J., & Xu, G. (2022). Circular economy towards zero waste and decarbonization. Circular Economy, 1, 100002. DOI: https://doi.org/10.1016/j.cec.2022.100002
  51. Li, Y., Shang, J., Zhang, C., Zhang, W., Niu, L., Wang, L., & Zhang, H. (2021). The role of freshwater eutrophication in greenhouse gas emissions: A review. Science of the Total Environment, 768, 144582. DOI: https://doi.org/10.1016/j.scitotenv.2020.144582
  52. Liu, K., Tan, Q., Yu, J., & Wang, M. (2023). A global perspective on e-waste recycling. Circular Economy, 2, 100028. DOI: https://doi.org/10.1016/j.cec.2023.100028
  53. Lobanov, V. P., Combot, D., Pelissier, P., Labbé, L., & Joyce, A. (2021). Improving plant health through nutrient remineralization in aquaponic systems. Frontiers in Plant Science, 12, 683690. DOI: https://doi.org/10.3389/fpls.2021.683690
  54. Love, D. C., Uhl, M. S., & Genello, L. (2015). Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland, United States. Aquacultural Engineering, 68, 19-27. DOI: https://doi.org/10.1016/j.aquaeng.2015.07.003
  55. Luna Juncal, M. J., Masino, P., Bertone, E., & Stewart, R. A. (2023). Towards nutrient neutrality: A review of agricultural runoff mitigation strategies and the development of a decision-making framework. Science of The Total Environment, 874, 162408. DOI: https://doi.org/10.1016/j.scitotenv.2023.162408
  56. Madady, M. H., Sarkheil, M., Zahedi, S., & Arouei, H. (2025). Application of liquid organic fertilizer produced from fish sludge in an aquaponics system: Influences on growth of Nile tilapia (Oreochromis niloticus) and peppermint (Mentha ×piperita L.). Aquacultural Engineering, 110, 102541. DOI: https://doi.org/10.1016/j.aquaeng.2025.102541
  57. Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability, 13, 1318. DOI: https://doi.org/10.3390/su13031318
  58. Mishra, R. K. (2023). Fresh water availability and its global challenge. British Journal of Multidisciplinary and Advanced Studies, 4, 1-78. DOI: https://doi.org/10.37745/bjmas.2022.0208
  59. Mohapatra, B. C., Chandan, N. K., Panda, S. K., Majhi, D., & Pillai, B. R. (2020). Design and development of a portable and streamlined nutrient film technique (NFT) aquaponic system. Aquacultural Engineering, 90, 102100. DOI: https://doi.org/10.1016/j.aquaeng.2020.102100
  60. Monsees, H., Keitel, J., Paul, M., Kloas, W., & Wuertz, S. (2017). Potential of aquacultural sludge treatment for aquaponics: evaluation of nutrient mobilization under aerobic and anaerobic conditions. Aquaculture Environment Interactions, 9, 9-18. DOI: https://doi.org/10.3354/aei00205
  61. Nair, C. S., Manoharan, R., Nishanth, D., Subramanian, R., Neumann, E., & Jaleel, A. (2025). Recent advancements in aquaponics with special emphasis on its sustainability. Journal of the World Aquaculture Society, 56, e13116. DOI: https://doi.org/10.1111/jwas.13116
  62. Netshivhumbe, R., Faloye, F., Tolessa, A., Görgens, J., & Goosen, N. (2024). Anaerobic Co-Digestion of Fish Sludge Originating from a Recirculating Aquaculture System. Waste and Biomass Valorization, 15, 5589-5605. DOI: https://doi.org/10.1007/s12649-024-02569-2
  63. Ng, J. J. (2017). Perceptions of Maintenance Management for Aquaponic System. UTAR Institutional Repository. http://eprints.utar.edu.my/2588/1/CM-_2017-1404374.pdf
  64. Nursyahid, A., Setyawan, T. A., Sa’diyah, K., Wardihani, E. D., Helmy, H., & Hasan, A. (2021). Analysis of Deep Water Culture (DWC) hydroponic nutrient solution level control systems. IOP Conference Series: Materials Science and Engineering, 1108, 012032. DOI: https://doi.org/10.1088/1757-899X/1108/1/012032
  65. Obirikorang, K. A., Sekey, W., Gyampoh, B. A., Ashiagbor, G., & Asante, W. (2021). Aquaponics for improved food security in Africa: A review. Frontiers in Sustainable Food Systems 5, 705549. DOI: https://doi.org/10.3389/fsufs.2021.705549
  66. Oladimeji, A. S., Olufeagba, S. O., Ayuba, V. O., Sololmon, S. G., & Okomoda, V. T. (2020). Effects of different growth media on water quality and plant yield in a catfish-pumpkin aquaponics system. Journal of King Saud University – Science, 32, 60-66. DOI: https://doi.org/10.1016/j.jksus.2018.02.001
  67. Palm, H. W., Knaus, U., Appelbaum, S., Goddek, S., Strauch, S. M., Vermeulen, T., Haїssam Jijakli, M., & Kotzen, B. (2018). Towards commercial aquaponics: a review of systems, designs, scales and nomenclature. Aquaculture International, 26, 813-842. DOI: https://doi.org/10.1007/s10499-018-0249-z
  68. Palmitessa, O. D., Signore, A., & Santamaria, P. (2024). Advancements and future perspectives in nutrient film technique hydroponic system: a comprehensive review and bibliometric analysis. Frontiers in Plant Science, 15 - 2024. DOI: https://doi.org/10.3389/fpls.2024.1504792
  69. Pantanella, E. (2012). Nutrition and quality of aquaponic systems. UnitusOpen. https://dspace.unitus.it/handle/2067/2547?mode=simple&locale=en
  70. Pattillo, D. A., Hager, J. V., Cline, D. J., Roy, L. A., & Hanson, T. R. (2022). System design and production practices of aquaponic stakeholders. PLOS One, 17, e0266475. DOI: https://doi.org/10.1371/journal.pone.0266475
  71. Peal, J. (2017). Aquaponics: Redefining Education for Our Youth. [Senior Thesis] Dominican University of California DOI: https://doi.org/10.33015/dominican.edu/2017.HCS.ST.15
  72. Peña, L. E., Osma, J. F., Márquez, J. D., Álvarez-Bustos, M., Fuentes-Forero, L., & Sierra-Hurtado, F. (2025). AQUAPONICS: A serious game to promote aquaponics systems for local community development. Journal of Cleaner Production, 144905. DOI: https://doi.org/10.1016/j.jclepro.2025.144905
  73. Rajaseger, G., Chan, K. L., Yee Tan, K., Ramasamy, S., Khin, M. C., Amaladoss, A., & Kadamb Haribhai, P. (2023). Hydroponics: current trends in sustainable crop production. Bioinformation, 19, 925-938. DOI: https://doi.org/10.6026/97320630019925
  74. Rakocy, J. E. (2012). Aquaponics—integrating fish and plant culture. Aquaculture Production Systems, 344-386. DOI: https://doi.org/10.1002/9781118250105.ch14
  75. Ravani, M., Chatzigeorgiou, I., Monokrousos, N., Giantsis, I. A., & Ntinas, G. K. (2024). Life cycle assessment of a high-tech vertical decoupled aquaponic system for sustainable greenhouse production. Frontiers in Sustainability, 5 - 2024. DOI: https://doi.org/10.3389/frsus.2024.1422200
  76. Rizal, A., Dhahiyat, Y., Zahidah, Andriani, Y., Handaka, A. A., & Sahidin, A. (2018). The economic and social benefits of an aquaponic system for the integrated production of fish and water plants. IOP Conference Series: Earth and Environmental Science 137, 012098. DOI: https://doi.org/10.1088/1755-1315/137/1/012098
  77. Romano, N., Powell, A., Islam, S., Fischer, H., Renukdas, N., Sinha, A.K., & Francis, S. (2022). Supplementing aquaponics with black soldier fly (Hermetia illucens) larvae frass tea: Effects on the production and composition of sweetpotato slips and sweet banana peppers. Aquaculture, 555, 738160. DOI: https://doi.org/10.1016/j.aquaculture.2022.738160
  78. Romano, N., Webster, C., Datta, S. N., Pande, G. S. J., Fischer, H., Sinha, A. K., Huskey, G., Rawles, S. D., & Francis, S. (2023). Black Soldier Fly (Hermetia illucens) Frass on Sweet-Potato (Ipomea batatas) Slip Production with Aquaponics. Horticulturae, 9, 1088. DOI: https://doi.org/10.3390/horticulturae9101088
  79. Saleem, A., Anwar, S., Nawaz, T., Fahad, S., Saud, S., Ur Rahman, T., Khan, M. N. R., & Nawaz, T. (2024). Securing a sustainable future: the climate change threat to agriculture, food security, and sustainable development goals. Journal of Umm Al-Qura University for Applied Sciences. DOI: https://doi.org/10.1007/s43994-024-00177-3
  80. Scanes, C. G. (2018). Impact of agricultural animals on the environment. Animals and human society, pp. 427-449. DOI: https://doi.org/10.1016/B978-0-12-805247-1.00025-3
  81. Sele, V., Ali, A., Liland, N., Lundebye, A.-K., Tibon, J., Araujo, P., Sindre, H., Nilsen, H., Hagemann, A., & Belghit, I. (2024). Characterization of nutrients and contaminants in fish sludge from Atlantic salmon (Salmo salar L.) production sites - A future resource. Journal of Environmental Management, 360, 121103. DOI: https://doi.org/10.1016/j.jenvman.2024.121103
  82. Shaw, C., Knopf, K., & Kloas, W. (2022). Fish Feeds in Aquaponics and Beyond: A Novel Concept to Evaluate Protein Sources in Diets for Circular Multitrophic Food Production Systems. Sustainability, 14, 4064. DOI: https://doi.org/10.3390/su14074064
  83. Stathopoulou, P., Berillis, P., Levizou, E., Sakellariou-Makrantonaki, M., Kormas, A., Aggelaki, A., Kapsis, P., Vlahos, N., & Mente, E. (2018). Aquaponics: A mutually beneficial relationship of fish, plants and bacteria. Proceedings of the 3rd International Congress on Applied Ichthyology & Aquatic Environment, Volos, Greece, pp. 8-11.
  84. Stoyanova, S., Sirakov, I., & Velichkova, K. (2024). Sustainable Production: Integrating Medicinal Plants with Fish Farming in Aquaponics—A Mini Review. Sustainability, 16, 6337. DOI: https://doi.org/10.3390/su16156337
  85. Sumberg, J., & Giller, K. E. (2022). What is ‘conventional’agriculture? Global Food Security, 32, 100617. DOI: https://doi.org/10.1016/j.gfs.2022.100617
  86. Tadesse, A. (2023). The Carbon Footprint and Ecosystem Services of Black Soldier Fly Larvae Meal as an Alternative Protein Source for Aquaponics. Ecological Insights, 8.
  87. Tanveer, M., Wang, S., Ma, X., Yu, P., Xu, P., Zhuang, L., & Hu, Z. (2025). Enhancement of nitrogen transformation in media-based aquaponics systems using biochar and zerovalent iron. Bioresource Technology, 418, 131933. DOI: https://doi.org/10.1016/j.biortech.2024.131933
  88. Thakur, K., Kuthiala, T., Singh, G., Arya, S. K., Iwai, C. B., Ravindran, B., Khoo, K. S., Chang, S. W., & Awasthi, M. K. (2023). An alternative approach towards nitrification and bioremediation of wastewater from aquaponics using biofilm-based bioreactors: A review. Chemosphere, 316, 137849. DOI: https://doi.org/10.1016/j.chemosphere.2023.137849
  89. Tom, A. P., Jayakumar, J. S., Biju, M., Somarajan, J., Ibrahim, M. A. (2021). Aquaculture wastewater treatment technologies and their sustainability: A review. Energy Nexus, 4, 100022. DOI: https://doi.org/10.1016/j.nexus.2021.100022
  90. Tyson, R. V., Treadwell, D. D., & Simonne, E. H. (2011). Opportunities and challenges to sustainability in aquaponic systems. HortTechnology, 21, 6-13. DOI: https://doi.org/10.21273/HORTTECH.21.1.6
  91. van Beukering, C. A. (2021). Real-time monitoring and control of an aquaponic system to ensure sustainability. [Doctoral dissertation] Central University of Technology.
  92. Verma, A. K., Chandrakant, M., John, V. C., Peter, R. M., & John, I. E. (2023). Aquaponics as an integrated agri-aquaculture system (IAAS): Emerging trends and future prospects. Technological Forecasting and Social Change, 194, 122709. DOI: https://doi.org/10.1016/j.techfore.2023.122709
  93. Vo, T. T. E., Ko, H., Huh, J.-H., & Park, N. (2021). Overview of Solar Energy for Aquaculture: The Potential and Future Trends. Energies, 14, 6923. DOI: https://doi.org/10.3390/en14216923
  94. Wakeland, W., Cholette, S., & Venkat, K. (2011). Food transportation issues and reducing carbon footprint. Green technologies in food production and processing, pp. 211-236. DOI: https://doi.org/10.1007/978-1-4614-1587-9_9
  95. Weber, C. L., & Matthews, H. S. (2008). Food-miles and the relative climate impacts of food choices in the United States. ACS Publications. DOI: https://doi.org/10.1021/es702969f
  96. Withers, P. J., Neal, C., Jarvie, H. P., & Doody, D. G. (2014). Agriculture and eutrophication: where do we go from here? Sustainability 6, 5853-5875. DOI: https://doi.org/10.3390/su6095853
  97. Wongkiew, S., Hu, Z., Chandran, K., Lee, J. W., & Khanal, S. K. (2017). Nitrogen transformations in aquaponic systems: A review. Aquacultural Engineering, 76, 9-19. DOI: https://doi.org/10.1016/j.aquaeng.2017.01.004
  98. Xia, M., Li, X., Yang, J., Li, G., Zhao, X., & Hou, H. (2023). Cress-loach coculture for improving the utilization efficiency of biogas slurry in aquaponic systems. Environmental Technology & Innovation, 32, 103328. DOI: https://doi.org/10.1016/j.eti.2023.103328
  99. Yavuzcan Yildiz, H., Robaina, L., Pirhonen, J., Mente, E., Domínguez, D., & Parisi, G. (2017). Fish welfare in aquaponic systems: its relation to water quality with an emphasis on feed and faeces—a review. Water, 9, 13. DOI: https://doi.org/10.3390/w9010013
  100. Zainal Alam, M. N. H., Kamaruddin, M. J., Adzila, S., Nordin, N., & Othman, R. (2022). Solar-powered aquaponics prototype as sustainable approach for food production. Materials Today: Proceedings, 65, 2953-2959. DOI: https://doi.org/10.1016/j.matpr.2022.02.530
  101. Zeng, X., Ogunseitan, O. A., Nakamura, S., Suh, S., Kral, U., Li, J., & Geng, Y. (2022). Reshaping global policies for circular economy. Circular Economy, 1, 100003. DOI: https://doi.org/10.1016/j.cec.2022.100003
  102. Zhang, H., Gao, Y., Shi, H., Lee, C.T., Hashim, H., Zhang, Z., Wu, W.-M., & Li, C. (2020). Recovery of nutrients from fish sludge in an aquaponic system using biological aerated filters with ceramsite plus lignocellulosic material media. Journal of Cleaner Production, 258, 120886. DOI: https://doi.org/10.1016/j.jclepro.2020.120886
  103. Zhang, R., Chen, T., Wang, Y., & Short, M. (2023). Systems approaches for sustainable fisheries: A comprehensive review and future perspectives. Sustainable Production and Consumption, 41, 242-252. DOI: https://doi.org/10.1016/j.spc.2023.08.013
  104. Zhanga, H., Gaoa, Y., Liua, J., Lina, Z., Tin Leeb, C., Hashimb, H., & Lia, C. (2021). Recovery of nutrients from fish sludge as liquid fertilizer to enhance sustainability of aquaponics: A review. Chemical Engineering Transactions, 88.
  105. Zhou, Y., & Wang, J. (2023). Detection and removal technologies for ammonium and antibiotics in agricultural wastewater: Recent advances and prospective. Chemosphere, 334, 139027. DOI: https://doi.org/10.1016/j.chemosphere.2023.139027
  106. Zhu, Z., Yogev, U., Goddek, S., Yang, F., Keesman, K. J., & Gross, A. (2022). Carbon dynamics and energy recovery in a novel near-zero waste aquaponics system with onsite anaerobic treatment. Science of The Total Environment, 833, 155245. DOI: https://doi.org/10.1016/j.scitotenv.2022.155245
  107. Zoli, M., Rossi, L., Bacenetti, J., & Aubin, J. (2024). Upscaling and environmental impact assessment of an innovative integrated multi-trophic aquaponic system. Journal of Environmental Management, 369, 122327. DOI: https://doi.org/10.1016/j.jenvman.2024.122327

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 > >>