Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 1 No. 2 (2025): International Journal of Rehabilitation & Disability Studies

Next-Generation AI in Neuro-development Multi-Omics Applications from Diagnosis to Care

  • Meera Alshamsi
  • Nasiba Alhammadi
Submitted
January 1, 2026
Published
2025-12-30

Abstract

Neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), intellectual disability (ID), and rare genetic syndromes, affect millions of children worldwide and impose a significant global health burden. Current diagnosis relies primarily on behavioral assessments, which are subjective, delayed, and poorly suited to capture comorbidities. Biological testing remains limited, leading to diagnostic delays of years in ASD, ADHD, and rare syndromes. Advances in multi-omics like genomics, transcriptomics, proteomics, metabolomics, and epigenomics, together with artificial intelligence (AI) provide a transformative path toward precision medicine in NDDs. Genomic studies highlight the role of copy number variants and polygenic risk scores in risk stratification, while transcriptomic and proteomic analyses reveal synaptic and neuroinflammatory pathways relevant to pathogenesis. Metabolomic profiling of biofluids identifies mitochondrial and microbiome-linked biomarkers, and epigenomics offers an environment-responsive regulatory layer. AI enables integration of these high-dimensional datasets, overcoming the “curse of dimensionality” through deep embedding, graph learning, and multimodal fusion. Case studies demonstrate promising accuracies in early prediction of ASD and ADHD from placental transcriptomics, DNA methylation, and newborn metabolomics, with reported AUCs approaching 1.00. Beyond diagnosis, AI-driven multi-omics supports stratified interventions, from metabolic modulation to pathway-specific pharmacology and neuromodulation, while adaptive monitoring systems linking omics to electronic health records and wearable biosensors enable continuous, individualized care. However, small cohorts, limited replication, high costs, and ethical issues around privacy, equity, and algorithmic bias remain critical barriers. Future progress is contingent on the independent validation of existing models, a shift toward explainable AI (XAI) to elucidate biological mechanisms, and the adoption of privacy-preserving federated learning platforms to enhance data diversity and model robustness. Future directions demand longitudinal biobanking, federated learning, XAI frameworks, and cross-disciplinary collaboration to ensure robust translation. Integrating AI with multi-omics holds unprecedented potential to reshape neurodevelopmental care from diagnosis to lifelong management.

References

  1. World Health Organization: WHO. Autism [Internet]. 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders
  2. Data and statistics on autism spectrum disorder [Internet]. Autism Spectrum Disorder (ASD). 2025. Available from: https://www.cdc.gov/autism/data-research/index.html
  3. Wikipedia contributors. Adult attention deficit hyperactivity disorder [Internet]. Wikipedia. 2025. Available from: https://en.wikipedia.org/wiki/Adult_attention_deficit_hyperactivity_disorder
  4. Data and statistics on ADHD [Internet]. Attention-Deficit / Hyperactivity Disorder (ADHD). 2024. Available from: https://www.cdc.gov/adhd/data/index.html
  5. Yang F, Chen R, Xiong J, Liu B. Disease Burden of Autism Spectrum Disorder and Attention - Deficit/Hyperactivity Disorder in the 0–14 Age Group across 204 Countries and Regions from 1990 To 2021. Child Psychiatry & Human Development [Internet]. 2025 Jul 11; Available from: https://pubmed.ncbi.nlm.nih.gov/40643744/
  6. Santomauro DF, Erskine HE, Herrera AMM, Miller PA, Shadid J, Hagins H, et al. The global epidemiology and health burden of the autism spectrum: findings from the Global Burden of Disease Study 2021. The Lancet Psychiatry [Internet]. 2024 Dec 1; Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC11750762/
  7. Kang L, Liu J, Liu Y, Liang W, Yang F, Liu M. Global, regional and national disease burden of autism spectrum disorder among children under 5 years from 1990 to 2019: An analysis for the Global Burden of Disease 2019 Study. Asian Journal of Psychiatry [Internet]. 2022 Nov 26;79:103359. Available from: https://www.researchgate.net/publication/365779847_Global_regional_and_national_disease_burden_of_autism_spectrum_disorder_among_children_under_5_years_from_1990_to_2019_an_analysis_for_the_Global_Burden_of_Disease_2019_Study
  8. Cortese S, Song M, Farhat LC, Yon DK, Lee SW, Kim MS, et al. Incidence, prevalence and global burden of ADHD from 1990 to 2019 across 204 countries: data with critical re-analysis, from the Global Burden of Disease study. Molecular Psychiatry [Internet]. 2023 Sep 8;28(11):4823–30. Available from: https://pubmed.ncbi.nlm.nih.gov/37684322/
  9. Salari N, Rasoulpoor S, Rasoulpoor S, Shohaimi S, Jafarpour S, Abdoli N, et al. The global prevalence of autism spectrum disorder: a comprehensive systematic review and meta-analysis. the Italian Journal of Pediatrics/Italian Journal of Pediatrics [Internet]. 2022 Jul 8;48(1). Available from: https://ijponline.biomedcentral.com/articles/10.1186/s13052-022-01310-w
  10. Van ’t Hof M, Tisseur C, Van Berckelear-Onnes I, Van Nieuwenhuyzen A, Daniels AM, Deen M, et al. Age at autism spectrum disorder diagnosis: A systematic review and meta-analysis from 2012 to 2019. Autism [Internet]. 2020 Nov 19;25(4):862–73. Available from: https://pubmed.ncbi.nlm.nih.gov/33213190/
  11. Digital subscriptions | Subscribe to The Times of London [Internet]. The Times & the Sunday Times - International Shop. 2025. Available from: https://globalstore.thetimes.com/
  12. Borrett A. Almost 2.5mn people in England estimated to have ADHD. Financial Times [Internet]. 2025 May 29; Available from: https://www.ft.com/content/a620597a-d36f-4fd2-9941-41784f807eb4
  13. Kentrou V, De Veld DM, Mataw KJ, Begeer S. Delayed autism spectrum disorder recognition in children and adolescents previously diagnosed with attention-deficit/hyperactivity disorder. Autism [Internet]. 2018 Sep 24;23(4):1065–72. Available from: https://journals.sagepub.com/doi/full/10.1177/1362361318785171
  14. Siegel IJ, Vaithilingam SL, Hartig MM, Patty EC, Mantsch LE, Garrison SR. Diagnostic Delays in Rare Genetic Disorders with Neuropsychiatric manifestations: A Systematic Review. European Journal of Medical Genetics [Internet]. 2025 Apr 1;105016. Available from: https://pubmed.ncbi.nlm.nih.gov/40252994/
  15. LaBianca S, LaBianca J, Pagsberg AK, Jakobsen KD, Appadurai V, Buil A, et al. Copy number variants and polygenic risk scores predict need of care in autism and/or ADHD families. Journal of Autism and Developmental Disorders [Internet]. 2020 May 27;51(1):276–85. Available from: https://pubmed.ncbi.nlm.nih.gov/32462456/
  16. Li JJ, He Q, Dorn S, Wang Z, Lu Q. Enhancing the discriminatory power of polygenic scores for ADHD and autism in clinical and non-clinical samples. Journal of Neurodevelopmental Disorders [Internet]. 2025 Jun 9;17(1). Available from: https://pubmed.ncbi.nlm.nih.gov/40490728/
  17. Kalin NH. Childhood- and Neurodevelopment-Related Psychiatric Disorders. American Journal of Psychiatry [Internet]. 2023 Jan 1;180(1):1–4. Available from: https://psychiatryonline.org/doi/10.1176/appi.ajp.20220952
  18. Ferrari E, Retico A, Cellerino A, Bacciu D. Convergent transcriptomic and neuroimaging signature of Autism Spectrum Disorder [Internet]. arXiv.org. 2025. Available from: https://arxiv.org/abs/2505.23776
  19. Fatemi SH, Eschenlauer A, Aman J, Folsom TD, Chekouo T. Quantitative proteomics of dorsolateral prefrontal cortex reveals an early pattern of synaptic dysmaturation in children with idiopathic autism. Cerebral Cortex [Internet]. 2024 May 1;34(13):161–71. Available from: https://pubmed.ncbi.nlm.nih.gov/38696595/
  20. Ristori MV, Mortera SL, Marzano V, Guerrera S, Vernocchi P, Ianiro G, et al. Proteomics and Metabolomics Approaches towards a Functional Insight onto AUTISM Spectrum Disorders: Phenotype Stratification and Biomarker Discovery. International Journal of Molecular Sciences [Internet]. 2020 Aug 30;21(17):6274. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC7504551
  21. Liu W, Li L, Xia X, Zhou X, Du Y, Yin Z, et al. Integration of urine proteomic and metabolomic profiling reveals novel insights into neuroinflammation in autism spectrum disorder. Frontiers in Psychiatry [Internet]. 2022 May 9;13. Available from: https://pubmed.ncbi.nlm.nih.gov/35615451/
  22. Mani S, Lalani SR, Pammi M. Genomics and multiomics in the age of precision medicine. Pediatric Research [Internet]. 2025 Apr 4; Available from: https://pubmed.ncbi.nlm.nih.gov/40185865/
  23. Yetgin A. Revolutionizing multi‐omics analysis with artificial intelligence and data processing. Quantitative Biology [Internet]. 2025 Apr 7;13(3). Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/qub2.70002
  24. Zhang X, Xing Y, Sun K, Guo Y. OMiEmbed: a unified Multi-Task deep learning framework for Multi-Omics data. Cancers [Internet]. 2021 Jun 18;13(12):3047. Available from: https://arxiv.org/abs/2102.02669
  25. Zhang Y, Jin H, Tong J, Gan H, Tao F, Zhu Y. Integration of multi-omics and crowdsourcing assessment of placenta-brain axis biomarkers for predicting neurodevelopmental disorders. Journal of Affective Disorders [Internet]. 2025 Jun 1;119732. Available from: https://pubmed.ncbi.nlm.nih.gov/40544887/
  26. Bahado-Singh RO, Vishweswaraiah S, Aydas B, Radhakrishna U. Placental DNA methylation changes and the early prediction of autism in full-term newborns. PLoS ONE [Internet]. 2021 Jul 14;16(7):e0253340. Available from: https://pubmed.ncbi.nlm.nih.gov/34260616/
  27. Nahas LD, Datta A, Alsamman AM, Adly MH, Al-Dewik N, Sekaran K, et al. Genomic insights and advanced machine learning: characterizing autism spectrum disorder biomarkers and genetic interactions. Metabolic Brain Disease [Internet]. 2023 Dec 28;39(1):29–42. Available from: https://link.springer.com/article/10.1007/s11011-023-01322-3
  28. Liu J, Mao J, Lin H, Kuang H, Pan S, Wu X, et al. Multi-modal multi-kernel graph learning for autism prediction and biomarker discovery [Internet]. arXiv.org. 2023. Available from: https://arxiv.org/abs/2303.03388
  29. Tang H, Liang J, Chai K, Gu H, Ye W, Cao P, et al. Artificial intelligence and bioinformatics analyze markers of children’s transcriptional genome to predict autism spectrum disorder. Frontiers in Neurology [Internet]. 2023 Jul 17;14. Available from: https://pubmed.ncbi.nlm.nih.gov/37528852/
  30. Bahado-Singh RO, Vishweswaraiah S, Aydas B, Radhakrishna U. Artificial intelligence and placental DNA methylation: newborn prediction and molecular mechanisms of autism in preterm children. The Journal of Maternal-Fetal & Neonatal Medicine [Internet]. 2021 Aug 17;35(25):8150–9. Available from: https://pubmed.ncbi.nlm.nih.gov/34404318/
  31. Courraud J, Ernst M, Laursen SS, Hougaard DM, Cohen AS. Studying autism using untargeted metabolomics in newborn screening samples. Journal of Molecular Neuroscience [Internet]. 2021 Jan 30;71(7):1378–93. Available from: https://link.springer.com/article/10.1007/s12031-020-01787-2
  32. Ashenden AJ, Chowdhury A, Anastasi LT, Lam K, Rozek T, Ranieri E, et al. The Multi-Omic Approach to Newborn Screening: Opportunities and challenges. International Journal of Neonatal Screening [Internet]. 2024 Jun 21;10(3):42. Available from: https://pubmed.ncbi.nlm.nih.gov/39051398/
  33. Ben-Sasson A, Guedalia J, Nativ L, Ilan K, Shaham M, Gabis LV. A Prediction Model of Autism Spectrum Diagnosis from Well-Baby Electronic Data Using Machine Learning. Children [Internet]. 2024 Apr 3;11(4):429. Available from: https://pubmed.ncbi.nlm.nih.gov/38671647/
  34. Infants’ health record data may improve early autism screening [Internet]. National Institute of Mental Health (NIMH). 2023. Available from: https://www.nimh.nih.gov/news/science-updates/2023/infants-health-record-data-may-improve-early-autism-screening
  35. Perochon S, Di Martino JM, Carpenter KLH, Compton S, Davis N, Eichner B, et al. Early detection of autism using digital behavioral phenotyping. Nature Medicine [Internet]. 2023 Oct 1;29(10):2489–97. Available from: https://pubmed.ncbi.nlm.nih.gov/37783967/
  36. Gkintoni E, Panagioti M, Vassilopoulos SP, Nikolaou G, Boutsinas B, Vantarakis A. Leveraging AI-Driven Neuroimaging Biomarkers for early detection and social function prediction in autism Spectrum Disorders: A Systematic review. Healthcare [Internet]. 2025 Jul 22;13(15):1776. Available from: https://pubmed.ncbi.nlm.nih.gov/40805809/
  37. Mesleh AG, Abdulla SA, El-Agnaf O. Paving the Way toward Personalized Medicine: Current Advances and Challenges in Multi-OMICS Approach in Autism Spectrum Disorder for Biomarkers Discovery and Patient Stratification. Journal of Personalized Medicine [Internet]. 2021 Jan 13;11(1):41. Available from: https://pubmed.ncbi.nlm.nih.gov/33450950/
  38. Zhuang H, Liang Z, Ma G, Qureshi A, Ran X, Feng C, et al. Autism spectrum disorder: pathogenesis, biomarker and intervention therapy. MedComm [Internet]. 2024 Mar 1;5(3). Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10908366/
  39. Zack M, Stupichev DN, Moore AJ, Slobodchikov ID, Sokolov DG, Trifonov IF, et al. AI and Multi-Omics in Pharmacogenomics: A New Era of Precision Medicine. Mayo Clinic Proceedings Digital Health [Internet]. 2025 Jun 26;3(3):100246. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC12381589/
  40. Ali SS, Li Q, Agrawal PB. Implementation of multi-omics in diagnosis of pediatric rare diseases. Pediatric Research [Internet]. 2024 Nov 19; Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC12106075/
  41. Scandurra V, Gialloreti LE, Barbanera F, Scordo MR, Pierini A, Canitano R. Neurodevelopmental Disorders and Adaptive Functions: A study of children with autism spectrum Disorders (ASD) and/or attention Deficit and Hyperactivity Disorder (ADHD). Frontiers in Psychiatry [Internet]. 2019 Sep 4;10. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC6737073/
  42. Boini A, Grasso V, Taher H, Gumbs AA. Artificial intelligence and the impact of multiomics on the reporting of case reports. World Journal of Clinical Cases [Internet]. 2025 Jan 21;13(15). Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC11755212/
  43. Srivastava R. Applications of artificial intelligence multiomics in precision oncology. Journal of Cancer Research and Clinical Oncology [Internet]. 2022 Jul 7;149(1):503–10. Available from: https://pubmed.ncbi.nlm.nih.gov/35796775/
  44. Pammi M, Aghaeepour N, Neu J. Multiomics, artificial intelligence and precision medicine in perinatology. Pediatric Research [Internet]. 2022 Jul 8;93(2):308–15. Available from: https://www.researchgate.net/publication/361849228_Multiomics_artificial_intelligence_and_precision_medicine_in_perinatology
  45. Joseph J. Algorithmic bias in public health AI: a silent threat to equity in low-resource settings. Frontiers in Public Health [Internet]. 2025 Jul 23;13. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC12325396/
  46. Cross JL, Choma MA, Onofrey JA. Bias in medical AI: Implications for clinical decision-making. PLOS Digital Health [Internet]. 2024 Nov 7;3(11):e0000651. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC11542778/
  47. Warraich HJ, Tazbaz T, Califf RM. FDA perspective on the regulation of artificial intelligence in health care and biomedicine. JAMA [Internet]. 2024 Oct 15; Available from: https://www.researchgate.net/publication/384939469_FDA_Perspective_on_the_Regulation_of_Artificial_Intelligence_in_Health_Care_and_Biomedicine
  48. Drouard G, Hagenbeek FA, Whipp A, Pool R, Hottenga JJ, Jansen R, et al. Longitudinal multi-omics study reveals common etiology underlying association between plasma proteome and BMI trajectories in adolescent and young adult twins. medRxiv (Cold Spring Harbor Laboratory) [Internet]. 2023 Jul 1; Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10327285/
  49. Crowther LM, Poms M, Plecko B. Multiomics tools for the diagnosis and treatment of rare neurological disease. Journal of Inherited Metabolic Disease [Internet]. 2018 Mar 13;41(3):425–34. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC5959950/
  50. O’Connor LM, O’Connor BA, Lim SB, Zeng J, Lo CH. Integrative multi-omics and systems bioinformatics in translational neuroscience: A data mining perspective. Journal of Pharmaceutical Analysis [Internet]. 2023 Jul 1;13(8):836–50. Available from: https://jpa.xjtu.edu.cn/article/doi/10.1016/j.jpha.2023.06.011

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.