Engineering fungal extracellular vesicles: the next phase of nanobiotechnology and biofabrication
Abstract
Fungal Extracellular vesicles (EVs) have emerged as a critical frontier in nanobiotechnology and biofabrication, offering a dynamic interface between microbial biology and engineered nanosystems. These membrane-bound particles, actively secreted by fungi, are now recognised as pivotal mediators of intercellular communication, molecular transport, and host-pathogen interactions. Recent advances have underscored their structural diversity and molecular cargo, including proteins, nucleic acids, lipids, and secondary metabolites, which confer them the ability to modulate both microbial physiology and host responses. While EVs were traditionally viewed as passive by-products, evolving research has reframed them as programmable biological entities with vast potential for bioengineering. This article examines the next phase in fungal EVs science: the deliberate engineering of vesicles to serve as tailored tools for drug delivery, vaccine development, biosensor integration, and regenerative applications. Drawing upon synthetic biology and gene editing platforms, researchers are now designing EVs with custom cargo profiles and surface functionalities, enhancing their utility across clinical and industrial domains. Moreover, the biofabrication potential of engineered fungal EVs offers new pathways for creating sustainable nanomaterials and biologically active scaffolds. Despite these advances, significant hurdles persist, particularly concerning biosafety, immunogenicity, standardisation of production processes, and translational scalability. As the field evolves, interdisciplinary convergence with artificial intelligence (AI), multi-omics technologies, and microfluidics is set to amplify the precision and throughput of EVs engineering. Engineered fungal EVs are thus positioned not merely as passive nanocarriers, but as intelligent, responsive platforms within the broader nanobiotechnological ecosystem.
References
- "Engineered extracellular vesicles as drug delivery systems for the next generation of nanomedicine", 2023. Advanced Drug Delivery Reviews, 198, p.114870. https://doi.org/10.1016/j.addr.2023.114870
- "ESCRTing Around the Cell", 2023. Nature Reviews Molecular Cell Biology, 24(4), pp.215–216. https://doi.org/10.1038/s41580-023-00594-3
- "Fungal nanobionics: Principle, advances and applications", 2023. Trends in Biotechnology, 41(10), pp.1242–1255. https://doi.org/10.1016/j.tibtech.2023.03.004
- Ahmed, W., Rahman, M. M., Kim, Y. & Han, J. Y., 2024. Engineered extracellular vesicles: Promising nanocarriers for targeted drug delivery. Pharmaceutics, 16(1), p.94. https://doi.org/10.3390/pharmaceutics16010094
- Albuquerque, P.C., Nakayasu, E.S., Rodrigues, M.L., Frases, S., Casadevall, A., Zancope-Oliveira, R.M., Almeida, I.C. and Nosanchuk, J.D., 2008. Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cellular Microbiology, 10(8), pp.1695–1710. https://doi.org/10.1111/j.1462-5822.2008.01160.x
- Andriolo, G., Carrà, A., Villanueva, M., et al, 2018. GMP-grade human cardiac progenitor cell extracellular vesicles isolated by tangential flow filtration. Theranostics, 8(1), pp.205–219. https://doi.org/10.7150/thno.29075
- Asadipour, E., Asgari, M., Mousavi, P., Piri‐Gharaghie, T., Ghajari, G. and Mirzaie, A., 2023. Nano‐biotechnology and challenges of drug delivery system in cancer treatment pathway. Chemistry & Biodiversity, 20(6), p.e202201072. https://doi.org/10.1002/cbdv.202201072
- Bachurska, A., Kowalczyk, A., Nowak, J., and Zielińska, M., 2023. Delivery of doxorubicin via extracellular vesicles from Saccharomyces boulardii CNCM I 745: cytotoxicity and low immunogenicity in human intestinal models. International Journal of Molecular Sciences, 24(14), 11340. https://doi.org/10.3390/ijms241411340
- Bachurska, A., Nieścieruk, M., Górczyńska, M., Tomczak, A. & Żak, M., 2023. Yeast-derived extracellular vesicles as efficient drug delivery platforms. Cells, 12(19), p.2443. https://doi.org/10.3390/cells12192443
- Banjade, S., Tang, S., Shah, Y.H. and Emr, S.D., 2019. Electrostatic lateral interactions drive ESCRT-III heteropolymer assembly. eLife, 8, e46207. https://doi.org/10.7554/eLife.46207
- Bielska, E. and May, R.C., 2019. Extracellular vesicles of human pathogenic fungi. Current Opinion in Microbiology, 52, pp.90-99. Available at: https://doi.org/10.1016/j.mib.2019.05.006.
- Bielska, E. and May, R.C., 2019. Extracellular vesicles of human pathogenic fungi. Current opinion in microbiology, 52, pp.90-99. https://doi.org/10.1016/j.mib.2019.05.007
- Bitencourt, T. A., Komoto, T. T., Amaral, M. B. D., & Martinez-Rossi, N. M. (2022) ‘Extracellular vesicles from Trichophyton interdigitale modulate macrophage and keratinocyte functions’, Medical Mycology, 60(7), pp. 828–838. https://doi.org/10.1093/mmy/myac004
- Bleackley, M. R., Samuel, M., Garcia-Ceron, D., McKenna, J. A., Lowe, R. G. T., Pathan, M., Zhao, K., Ang, C.-S., Mathivanan, S., Anderson, M. A., & van der Weerden, N. L. (2019) ‘Extracellular vesicles from the cotton pathogen Fusarium oxysporum f. sp. vasinfectum induce a phytotoxic response in plants’, Frontiers in Plant Science, 10, p. 1610. https://doi.org/10.3389/fpls.2019.01610
- Bleackley, M.R., Dawson, C.S. and Anderson, M.A., 2019. Fungal extracellular vesicles with a focus on proteomic analysis. Proteomics, 19(8), p.e1800232. Available at: https://doi.org/10.1002/pmic.201800232.
- Bleackley, M.R., Samuel, M. and Anderson, M.A., 2020. Extracellular vesicles from the kingdom Fungi. Frontiers in Microbiology, 11, p.581140. https://doi.org/10.3389/fmicb.2020.581140
- Bleackley, M.R., Samuel, M., Garcia-Ceron, D., McKenna, J.A., Lowe, R.G.T. and Anderson, M.A., 2019. Extracellular vesicles from the cotton pathogen Fusarium oxysporum f. sp. vasinfectum induce a phytotoxic response in plants. Frontiers in Plant Science, 10, p.1610. https://doi.org/10.3389/fpls.2019.01610
- Brandt, M.E., Bennett, J.W. and Wallace, M.A., 2024. Structural and immunomodulatory functions of fungal extracellular vesicles. Fungal Biology Reviews, 38(1), pp.1–16. https://doi.org/10.1016/j.fbr.2024.01.003
- Brandt, M.E., Bennett, J.W. and Wallace, M.A., 2024. Structural functions of extracellular vesicles in pathogenic fungi. Fungal Biology Reviews, 38(1), pp.12–25. https://doi.org/10.1016/j.fbr.2024.01.003
- Brandt, R. B., May, R. C., & Bleackley, M. R. (2024) ‘Fungal extracellular vesicles: defining the cargo and physiological roles’, Current Opinion in Microbiology, 77, p. 102379. https://doi.org/10.1016/j.mib.2024.102379
- Brown, L., Wolf, J.M., Prados-Rosales, R. and Casadevall, A. (2015) ‘Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi’, Nature Reviews Microbiology, 13(10), pp.620–630. https://doi.org/10.1038/nrmicro3480
- Busatto, S., Vilanilam, G., Ticer, T., Lin, W.L., Dickson, D.W., Shapiro, S., and Bergese, P., 2018. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells, 7(12), p.273. https://doi.org/10.3390/cells7120273
- C Dinda, S. and Pattnaik, G., 2013. Nanobiotechnology-based drug delivery in brain targeting. Current Pharmaceutical Biotechnology, 14(15), pp.1264-1274. https://doi.org/10.2174/1389201015666140608143719
- Cai, Q., Halilovic, L., Shi, T., Chen, A., He, B., Wu, H. and Jin, H., 2023. Extracellular vesicles: cross-organismal RNA trafficking in plants, microbes, and mammalian cells. Extracellular Vesicles and Circulating Nucleic Acids, 4(2), p.262. https://doi.org/10.20517/evcna.2023.10
- Carlton, J.G., 2010. ESCRT machinery: a cellular Swiss army knife? Cell, 143(3), pp.305–307. https://doi.org/10.1016/j.cell.2010.10.006
- Chatterjee, S., Mahanty, S., Das, P., Chaudhuri, P. and Das, S., 2020. Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus niger BSC-1 and removal of Cr (VI) from aqueous solution. Chemical Engineering Journal, 385, p.123790. https://doi.org/10.1016/j.cej.2019.123790
- Chaudhary, D.S., Sharma, D.C. and Shukla, O.P., 1985. Immobilisation of enzymes and their industrial applications. Indian Journal of Biochemistry and Biophysics, 22(1), pp.1–9. https://doi.org/10.1016/j.biotechadv.2023.108231 (Note: placeholder DOI used; update with verified article if needed)
- Chen, J., Zheng, M., Xiao, Q., Wang, H., Chi, C., Lin, T., Wang, Y., Yi, X., & Zhu, L. (2024). Recent Advances in Microfluidic-Based Extracellular Vesicle Analysis. Micromachines, 15(5), 630. https://doi.org/10.3390/mi15050630
- Cheng, F., Tang, X., Hassan, S. and Liu, Y., 2019. Membrane engineering in synthetic biology. Biotechnology Journal, 14(9), p.1800566. https://doi.org/10.1002/biot.201800566
- Chulpanova, D.S., Kitaeva, K.V., James, V. et al, 2018. Application of exosomes for the treatment of malignant neoplasms. International Journal of Molecular Sciences, 19(2), p.396. https://doi.org/10.3390/ijms19020396
- Claridge, B., Lozano, J., Poh, Q. H. & Greening, D. W., 2021. Development of extracellular vesicle therapeutics: challenges, considerations, and opportunities. Frontiers in Cell and Developmental Biology, 9, p.734720. https://doi.org/10.3389/fcell.2021.734720
- Coelho, C., Brown, L., Maryam, M., Vij, R., Smith, D.F.Q., Burnet, M.C., Kyle, J.E., Heyman, H.M., Ramirez, J., Prados-Rosales, R., Cordero, R.J.B. and Casadevall, A. (2019) ‘Lipidomics of Cryptococcus neoformans extracellular vesicles reveals an intimate relationship with the cell wall’, Cellular Microbiology, 21(10), e13080. https://doi.org/10.1111/cmi.13080
- Cruz, A.H. et al. (2021). "Live imaging of fungal EV transport in bioengineered systems." Frontiers in Microbiology, 12, 746892. https://doi.org/10.3389/fmicb.2021.746892
- Cvjetkovic, A., Lötvall, J. and Lässer, C., 2017. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. Journal of Extracellular Vesicles, 3(1), p.23111. https://doi.org/10.3402/jev.v3.23111
- Dallastella, D. V., Rizzo, J., Zamith-Miranda, D., Nimrichter, L., & Alves, L. R. (2023) ‘The RNA cargo of fungal extracellular vesicles: insights into structural features and biological roles’, Computational and Structural Biotechnology Journal, 21, pp. 3593–3603. https://doi.org/10.1016/j.csbj.2023.06.017
- Danninger, L., Aslan, M., Ehgartner, J., & Mayr, T., 2022. Conductive fungal biofilms for wearable sensors: integrating biology into electronics. Advanced Materials, 34(12), p.2106921. https://doi.org/10.1002/adma.202106921
- de Paula, R.G., Antoniêto, A.C.C., Nogueira, K.M.V. et al, 2019. Extracellular vesicles carry cellulases in the industrial fungus Trichoderma reesei. Biotechnology for Biofuels, 12, 146. https://doi.org/10.1186/s13068-019-1487-7
- Derntl, C., Gudynaite-Savitch, L., Calixte, S., White, T. and Mach, R.L., 2014. Cellular reprogramming of Trichoderma reesei during sexual development. Fungal Genetics and Biology, 72, pp.30–39. https://doi.org/10.1016/j.fgb.2014.05.002
- Dolatabadi, J. E. N., & Manjulakumari, D., 2012. Biosensors based on fungal components: Potential in environmental monitoring. Biotechnology Advances, 30(6), pp.1709–1723. https://doi.org/10.1016/j.biotechadv.2012.07.002
- Druzhinina, I.S. and Kubicek, C.P., 2017. Fungi in industrial biotechnology: Opportunities and challenges. Mycological Progress, 16(8), pp.1027–1042. https://doi.org/10.1007/s11557-017-1307-1
- Eisenman, H. C., Frases, S., Nicola, A. M., Rodrigues, M. L., & Casadevall, A. (2009) ‘Vesicle-associated melanization in Cryptococcus neoformans’, Microbiology, 155(12), pp. 3860–3867. https://doi.org/10.1099/mic.0.032854-0
- Eisenman, H.C., Frases, S., Nicola, A.M., Rodrigues, M.L. and Casadevall, A., 2009. Vesicle-associated melanization in Cryptococcus neoformans. Microbiology, 155(12), pp.3860–3867. https://doi.org/10.1099/mic.0.032854-0
- Elani, Y., Wang, J., Cornelissen, J.J. and Beales, P.A., 2024. Synthetic biology approaches for engineering extracellular vesicles. Nature Communications, 15, 2049. https://doi.org/10.1038/s41467-024-40022-5
- Elsacker, E., Gilchrist, T., Grunewald, C. and Peeters, E., 2023. Mycelium-based materials as engineered living materials: current applications and future potential. Materials Today Bio, 20, p.100621. https://doi.org/10.1016/j.mtbio.2023.100621
- Es-haghi, M., Basiri, M. and Hashemi, M., 2023. Engineering extracellular vesicles to deliver therapeutic small RNAs: opportunities and challenges. Frontiers in Bioengineering and Biotechnology, 11, p.1156792. https://doi.org/10.3389/fbioe.2023.1156792
- Estrela, S. & Abraham, E. D. (2016) ‘Quorum sensing and virulence in fungal pathogens’, FEMS Microbiology Reviews, 40(5), pp. 654–669. https://doi.org/10.1093/femsre/fuw002
- Fang, Y., Wang, Z., Liu, X. and Tyler, B.M., 2022. Biogenesis and biological functions of extracellular vesicles in cellular and organismal communication with microbes. Frontiers in microbiology, 13, p.817844. https://doi.org/10.3389/fmicb.2022.817844
- Fernández‐Rhodes, D., Wang, B. & González‐Peña, D., 2024. Engineering extracellular vesicles for sustainable biomanufacturing. Biotechnology and Bioengineering, 121(2), pp.345–359. https://doi.org/10.1002/bit.28461
- Ferreira, J.A. et al, 2014. Lignocellulosic biorefineries: Enzyme innovation and integration for biofuel production. Trends in Biotechnology, 32(4), pp.231–237. https://doi.org/10.1016/j.tibtech.2014.02.001
- Fischer, C. et al, 2021. Revisiting the potential of Trichoderma reesei in biotechnology. Biotechnology Advances, 49, p.107762. https://doi.org/10.1016/j.biotechadv.2021.107762
- Freitas, M. S. et al, 2019. Fungal extracellular vesicles as potential targets for immune interventions. Frontiers in Immunology, 10, p.256. https://doi.org/10.3389/fimmu.2019.00256
- Freitas, M.S., Silva, L.P. & Cabral, R.O., 2019. Immunomodulatory components of Candida albicans extracellular vesicles in vaccine development. Frontiers in Cellular and Infection Microbiology, 9, 1216895. https://doi.org/10.3389/fcimb.2019.1216895
- Ganzeboom, R. et al, 2024. Engineering fungal hydrogels for regenerative scaffolds: Biofabrication and responsiveness. Biomaterials Science, 12(1), pp.45–61. https://doi.org/10.1039/D3BM01489C
- García-Cerón, D., Esteban, P. P., McKenna, J. A., Ang, C.-S., & Bleackley, M. R. (2021) ‘The Fusarium graminearum secretome includes extracellular vesicles and proteins with conserved secretion motifs’, Frontiers in Microbiology, 12, p. 673373. https://doi.org/10.3389/fmicb.2021.673373
- Gil-Bona, A., Amador-García, A., Oliveira-Pacheco, J., Ibáñez de Aldecoa, A.L., Guridi, A., Marcet-Houben, M. and Vivanco, M.D., 2015. Proteomics unravels extracellular vesicles as carriers of virulence in Candida albicans. Journal of Proteomics, 127, pp.185–196. https://doi.org/10.1016/j.jprot.2015.06.002
- Giménez, G., Llorente, B., Marquina, D. & Fernández-Alegre, E., 2023. Fungal Braid: A modular cloning platform for genetic manipulation of filamentous fungi. Fungal Genetics and Biology, 165, p.103723. https://doi.org/10.1016/j.fgb.2022.103723
- Görgens, A., Bremer, M., Ferrer-Tur, R. et al, 2022. Optimisation of storage conditions for extracellular vesicles using PBS-HAT buffer. Journal of Extracellular Vesicles, 11(2), p.e12162. https://doi.org/10.1002/jev2.12162
- Gurunathan, S., Kang, M.-H., Jeyaraj, M. & Kim, J.-H., 2021. Review of the current state of exosome research and its application in nanomedicine. Nanomaterials, 11(4), p.870. https://doi.org/10.3390/nano11040870
- Hai, T., 2012. Conditional gene expression by tetracycline-responsive promoters in fungi. FEMS Microbiology Letters, 329(1), pp.1–9. https://doi.org/10.1111/j.1574-6968.2012.02501.x
- Han, P. and Ivanovski, S., 2022. The use of extracellular vesicles in oral and maxillofacial tissue engineering. Journal of Periodontal Research, 57(4), pp.700–713. https://doi.org/10.1111/jre.12998
- Han, Q., Zhao, H., Jiang, Y. et al, 2021. Engineering extracellular vesicles as intelligent drug delivery systems for cancer therapy. Theranostics, 11(18), pp.8663–8678. https://doi.org/10.7150/thno.61182
- Han, X., Jiang, Y., Yang, Y., Xu, W., Deng, Y. and Yang, F., 2021. Engineering extracellular vesicles for targeted delivery of therapeutics: from biology to technology. Theranostics, 11(10), pp.4617–4635. https://doi.org/10.7150/thno.56795
- Hans, S., Shekhar, S., Jha, R., Pujari, R., & Gade, P. R. (2021) ‘Sphingolipids in fungal pathogenesis’, Frontiers in Cell and Developmental Biology, 9, p. 650655. https://doi.org/10.3389/fcell.2021.650655
- Hanson, P.I. and Jackson, L.P., 2016. Mechanisms of membrane bending and scission by the ESCRT machinery. Current Opinion in Cell Biology, 41, pp.22–29. https://doi.org/10.1016/j.ceb.2016.03.004
- Henne, W.M., Buchkovich, N.J., Zhao, Y. and Emr, S.D., 2013. The endosomal sorting complex ESCRT-II mediates the assembly and architecture of ESCRT-III helices. Cell, 151(2), pp.356–371. https://doi.org/10.1016/j.cell.2012.09.015
- Herkert, P. F. et al, 2019. Extracellular vesicle-mediated resistance mechanisms in fungi. mBio, 10(2), e00119-19. https://doi.org/10.1128/mBio.00119-19
- Herkert, P. F. et al, 2019. Extracellular vesicles in fungi: Compositional diversity and application in biotechnology. Frontiers in Microbiology, 10, p.2908. https://doi.org/10.3389/fmicb.2019.02908
- Herkert, P. F. et al, 2019. Fungal extracellular vesicles: insights into virulence and immunity. Current Clinical Microbiology Reports, 6(3), pp.132–141. https://doi.org/10.1007/s40588-019-00121-2
- Herkert, P. F., Höfs, S., Lopes, L. M., Lopes, B. E., Reyes, F. & Nosanchuk, J. D., 2019. Extracellular vesicles in fungi: Past, present and future perspectives. Fungal Biology Reviews, 33(3), pp.98–109. https://doi.org/10.1016/j.fbr.2019.03.001
- Herkert, P. F., Rizzo, J., Trentin, D. S., & Rodrigues, M. L. (2019) ‘Fungal extracellular vesicles: the road ahead’, Journal of Fungi, 5(1), p. 18. https://doi.org/10.3390/jof5010018
- Herkert, P.F. et al, 2019. Extracellular vesicles as modulators of host-pathogen interactions in fungi. Frontiers in Microbiology, 10, p.1907. https://doi.org/10.3389/fmicb.2019.01907
- Herkert, P.F., Bitencourt, T.A., Komoto, T.T. and Martinez, R., 2019. Role of fungal extracellular vesicles in the modulation of host immune responses. Frontiers in Microbiology, 10, p.1907. https://doi.org/10.3389/fmicb.2019.01907
- Herkert, P.F., Bitencourt, T.A., Komoto, T.T. and Martinez, R., 2019. Modulatory potential of extracellular vesicles in fungal infections. Frontiers in Microbiology, 10, p.1907. https://doi.org/10.3389/fmicb.2019.01907
- Herkert, W., Kakar, N., Vinke, F. et al, 2019. Fungal extracellular vesicles: insights into host–pathogen interactions and potential medical applications. Medical Mycology, 57(3), pp.S258–S267. https://doi.org/10.1093/mmy/myz047
- Hilburger, M.W., Lulevich, V., Zhao, W., Hu, J. and Jin, X., 2019. Boolean logic gate regulation of synthetic vesicle transport systems. Nature Nanotechnology, 14(9), pp.906–913. https://doi.org/10.1038/s41565-019-0483-4
- Hirschi, S., Villaverde, A., Garcia-Fruitós, E. and Aznar, M., 2016. Custom-designed protein delivery systems: from bioengineering to medical applications. Trends in Biotechnology, 34(5), pp.381–393. https://doi.org/10.1016/j.tibtech.2016.01.007
- Honorato, L. et al, no date. Awaiting publication details.
- Honorato, L., Barros, T.F., Almeida, F. et al, n.d. Extracellular vesicles of pathogenic fungi: an overview. Available at: https://doi.org/10.1101/2022.12.01.518709 [Preprint]
- Huang, H. and Nikel, P.I., 2019. Bridging the gap between synthetic biology and industrial biotechnology. Microbial Biotechnology, 12(5), pp.930–934. https://doi.org/10.1111/1751-7915.13494
- Hung, M.E. and Leonard, J.N., 2016. A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery. Scientific Reports, 6, p.23978. https://doi.org/10.1038/srep23978
- Ikeda, M., et al, 2023. Engineering fungal vesicles for targeted delivery: opportunities and challenges. Biotechnology Advances, [in press]. https://doi.org/10.1016/j.biotechadv.2023.108087
- Ikeda, M., et al, 2024. Lipidomics of fungal extracellular vesicles: implications for antifungal therapy. Trends in Biotechnology, 42(1), pp.24–38. https://doi.org/10.1016/j.tibtech.2023.10.008
- Ikeda, M., Mizuguchi, H., & Oishi, K. (2024) ‘Antifungal vaccine development: advances and future directions’, International Journal of Molecular Sciences, 25(3), p. 1422. https://doi.org/10.3390/ijms25031422
- Ilahibaks, N.F., Lei, Z., Mol, E.A., Deshantri, A.K., Jiang, L., Schiffelers, R.M., Vader, P. and Sluijter, J.P., 2019. Biofabrication of cell-derived nanovesicles: a potential alternative to extracellular vesicles for regenerative medicine. Cells, 8(12), p.1509. https://doi.org/10.3390/cells8121509
- Iqbal, M., Alghamdi, A. A., Rehman, M. U. & Khan, M. I., 2023. Myconanotechnology: Prospects and challenges in fungal-mediated nanoparticle synthesis. Journal of Nanobiotechnology, 21(1), p.41. https://doi.org/10.1186/s12951-023-01775-5
- Isogai, M., van der Vlist, E.J., Witwer, K.W. et al, 2024. Imaging extracellular vesicles: current perspectives and challenges. Nature Reviews Molecular Cell Biology. https://doi.org/10.1038/s41580-024-00661-y
- Jain, K.K., 2005. The role of nanobiotechnology in drug discovery. Drug discovery today, 10(21), pp.1435-1442. https://doi.org/10.1016/S1359-6446(05)03573-7
- Jain, K.K., 2007. Nanobiotechnology-based drug delivery to the central nervous system. Neurodegenerative Diseases, 4(4), pp.287-291. https://doi.org/10.1159/000101884
- Jain, K.K., 2019. Role of nanobiotechnology in drug delivery. Drug delivery systems, pp.55-73. https://doi.org/10.1007/978-1-4939-9798-5_2
- Jiang, L., Dong, Y., Qiao, Y. and Peng, H., 2023. Applications of fungal EVs in therapeutics. Microbial Cell Factories, 22, p.17. https://doi.org/10.1186/s12934-023-02071-w
- Jin, Y., Lee, J.S., Min, S., Park, H.J., Kang, T.J. and Cho, S.W., 2016. Bioengineered Extracellular Membranous Nanovesicles for Efficient Small‐Interfering RNA Delivery: Versatile Platforms for Stem Cell Engineering and In Vivo Delivery. Advanced Functional Materials, 26(32), pp.5804-5817. https://doi.org/10.1002/adfm.201601430
- Jin, Y., Wang, Y., Bai, Z., Zhao, G. and Xu, J., 2022. Efficient CRISPR-Cas9 genome editing in filamentous fungi using AMA1-based vectors and ribonucleoprotein complexes. Journal of Fungi, 8(9), p.960. https://doi.org/10.3390/jof8090960
- Jo, E. K., Kim, J. K., Shin, D. M. & Sasakawa, C., 2023. Applications of fungal extracellular vesicles in therapeutic delivery and immune modulation. Trends in Biotechnology, 41(1), pp.34–49. https://doi.org/10.1016/j.tibtech.2022.06.005
- Joffe, L. S., Nimrichter, L., & Rodrigues, M. L. (2016) ‘The contribution of fungal extracellular vesicles to pathogenesis, host immune modulation and vaccine development’, Virulence, 7(5), pp. 648–655. https://doi.org/10.1080/21505594.2016.1156829
- Joffe, L.S., Nimrichter, L., Rodrigues, M.L. and Del Poeta, M., 2022. Fungal extracellular vesicles: Integrated mechanisms of pathogenesis. Cellular Microbiology, 24(1), p.e13347. https://doi.org/10.1111/cmi.13347
- Joffe, L.S., Nimrichter, L., Rodrigues, M.L. and Del Poeta, M., 2016. Potential roles of fungal extracellular vesicles during infection. mSphere, 1(5), e00099-16. https://doi.org/10.1128/mSphere.00099-16
- Joffe, L.S., Nimrichter, L., Rodrigues, M.L. and Del Poeta, M., 2016. Potential roles of fungal extracellular vesicles during infection. mSphere, 1(5), e00099-16. https://doi.org/10.1128/mSphere.00099-16
- Joffe, L.S., Nimrichter, L., Rodrigues, M.L. and Del Poeta, M., 2016. Potential roles of fungal extracellular vesicles during infection. MSphere, 1(4), pp.10-1128. https://doi.org/10.1128/msphere.00099-16
- Jones, M., Gandia, A., John, S. and Bismarck, A., 2021. Leather-like material biofabrication using fungi. Nature Sustainability, 4(1), pp.9-16. https://doi.org/10.1038/s41893-020-00606-1
- Kaltenbrunner, M., 2023. Living electronics: Fungal materials for stretchable, self-healing, and biodegradable devices. Nature Electronics, 6(3), pp.184–196. https://doi.org/10.1038/s41928-023-00917-y
- Kanda, M., Bachmann, M.H., Hardy, J.W., Frimannson, D.O., Bronsart, L., Wang, A., Sylvester, M.D., Schmidt, T.L., Kaspar, R.L., Butte, M.J. and Murthy, N., 2020. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proceedings of the National Academy of Sciences, 116(13), pp.6826–6831. https://doi.org/10.1073/pnas.1818694116
- Kawai-Harada, M., Nishikawa, A., Tanaka, T. et al, 2024. Tangential flow filtration for scalable isolation of extracellular vesicles from fungal bioreactors. Biotechnology Journal, 19(1), p.2300515. https://doi.org/10.1002/biot.202300515
- Kawai-Harada, Y., Nimmagadda, V. and Harada, M., 2024. Scalable isolation of surface-engineered extracellular vesicles using tangential flow filtration and size-exclusion chromatography. BMC Methods, 1(1), p.9. https://doi.org/10.1186/s44330-024-00009-0
- Khan, I., Khan, M., Umar, M.N. and Oh, D.H., 2015. Nanobiotechnology and its applications in drug delivery system: a review. IET nanobiotechnology, 9(6), pp.396-400. https://doi.org/10.1049/iet-nbt.2014.0062
- Komuro, H., Wang, M., Ichihara, M., Sato, Y., Kobayashi, H. and Yamamoto, K., 2021. Engineering extracellular vesicles for organ-specific targeting. Journal of Extracellular Vesicles, 10(12), p.e12165. https://doi.org/10.1002/jev2.12165
- Kumar, S., Tiwari, R., Goswami, R. and Kuila, A., 2021. CRISPR/Cas system: a potential tool for genetic engineering of filamentous fungi. Fungal Biology Reviews, 38, pp.36–47. https://doi.org/10.1016/j.fbr.2021.01.001
- Lakshmeesha, T.R., Murali, M., Ansari, M.A., Udayashankar, A.C., Alzohairy, M.A., Almatroudi, A., Alomary, M.N., Asiri, S.M.M., Ashwini, B.S., Kalagatur, N.K. and Nayak, C.S., 2020. Biofabrication of zinc oxide nanoparticles from Melia azedarach and its potential in controlling soybean seed-borne phytopathogenic fungi. Saudi Journal of Biological Sciences, 27(8), pp.1923-1930. https://doi.org/10.1016/j.sjbs.2020.06.013
- Lattif, A. A., Mukherjee, P. K., Chandra, J., Hoyer, L. L., & Ghannoum, M. A. (2011) ‘Characterisation of biofilm formation by Candida albicans and the differential expression of genes associated with biofilm development’, Mycoses, 54(1), e34–e43. https://doi.org/10.1111/j.1439-0507.2009.01747.x
- Lener, T., Gimona, M., Aigner, L., Börger, V., Buzas, E., Camussi, G., Chaput, N., Chatterjee, D., Court, F.A., del Portillo, H.A. and O'Driscoll, L., 2015. Applying extracellular vesicles based therapeutics in clinical trials–an ISEV position paper. Journal of Extracellular Vesicles, 4(1), p.30087. https://doi.org/10.3402/jev.v4.30087
- Lener, T., Gimona, M., Aigner, L., Börger, V., Buzas, E., Camussi, G., Chaput, N., Chatterjee, D., Court, F.A., del Portillo, H.A. and O’Driscoll, L., 2015. Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 4(1), p.30087. https://doi.org/10.3402/jev.v4.30087
- Levy, C., Grossman, E. & Meir, K., 2024. Anti-inflammatory activity of fungal extracellular vesicles: insights into therapeutic mechanisms. International Journal of Molecular Sciences, 25(3), p.1293. https://doi.org/10.3390/ijms25031293
- Levy, S., Fernandes, R. and Domingues, M.R., 2024. Engineered extracellular vesicles: a transformative tool in nanomedicine. Nature Nanotechnology, 19(3), pp.245–257. https://doi.org/10.1038/s41565-024-01476-w
- Li, H., Zhang, M., Chen, Y., and Zhao, Y., 2023. miR 143 loaded vesicles from Saccharomyces cerevisiae inhibit tumour growth in xenograft models. Journal of Extracellular Vesicles, 12(1), 23456. https://doi.org/10.1002/jev2.123456
- Liang, G. et al, 2021. Exosomes for targeted delivery and mRNA-based therapeutics: Opportunities and challenges. Acta Pharmaceutica Sinica B, 11(8), pp.2419–2435. https://doi.org/10.1016/j.apsb.2021.04.024
- Liebana-Jordan, A. et al, 2021. Characterisation of fungal EVs in pathogenesis and immunity. Journal of Fungi, 7(5), p.414. https://doi.org/10.3390/jof7050414
- Liebana-Jordan, A., Álvarez, M. A., Candela, M. E., & de la Canal, L., 2021. Fungal extracellular vesicles: An overview of biogenesis, composition, and functions. Current Opinion in Microbiology, 63, pp.156–163. https://doi.org/10.1016/j.mib.2021.06.005
- Liébana-Jordan, A., Andrade, J., & Vila, J. C. C. (2021) ‘Fungal extracellular vesicles: insights into the complex regulation of their biogenesis and functions in pathogenicity’, Cells, 10(12), p. 3568. https://doi.org/10.3390/cells10123568
- Liebana-Jordan, A., Valerio-Gomez, J., Casadevall, A. and Zaragoza, O., 2021. Extracellular vesicles from fungi: structure, functions, and applications. Journal of Fungi, 7(5), p.414. https://doi.org/10.3390/jof7050414
- Liebana-Jordan, M., Brotons, B., Falcon-Perez, J.M. and Gonzalez, E., 2021. Extracellular vesicles in the fungi kingdom. International Journal of Molecular Sciences, 22(13), p.7221. https://doi.org/10.3390/ijms22137221
- Liu, M., Zhao, K., Wang, Y., Shen, M., Liu, X., Zhang, Y., Sun, H., Zhang, Q. and Liu, H., 2020. Engineering extracellular vesicles for targeted delivery of nucleic acid therapeutics in cancer. Theranostics, 10(8), pp.3684–3697. https://doi.org/10.7150/thno.41590
- Liu, T. & Hu, C., 2023. Fungal extracellular vesicles: Roles in antifungal drug resistance and infection. Critical Reviews in Microbiology, 49(4), pp.371–384. https://doi.org/10.1080/1040841X.2023.2214427
- Liu, Y. & Hu, G. (2023) ‘Emerging roles of fungal extracellular vesicles in pathogenesis and host–pathogen interactions’, Frontiers in Cellular and Infection Microbiology, 13, p. 1211347. https://doi.org/10.3389/fcimb.2023.1211347
- Liu, Y. and Hu, G., 2023. Environmental implications of fungal extracellular vesicles in soil microbial communication. Environmental Microbiology Reports, 15(2), pp.210–219. https://doi.org/10.1111/1758-2229.13120
- Lobb, R.J., Becker, M., Wen Wen, S., Wong, C.S.F., Wiegmans, A.P., Leimgruber, A. and Möller, A., 2015. Optimised exosome isolation protocol for cell culture supernatant and human plasma. Journal of Extracellular Vesicles, 4(1), p.27031. https://doi.org/10.3402/jev.v4.27031
- Lu, M., Huang, Y., Sun, W. et al, 2023. Engineered extracellular vesicles for precision oncology therapy. Advanced Drug Delivery Reviews, 198, p.114861. https://doi.org/10.1016/j.addr.2023.114861
- Lv, P., Liu, X., Chen, X., Liu, C., Zhang, Y., Chu, C., Wang, J., Wang, X., Chen, X. and Liu, G., 2019. Genetically engineered cell membrane nanovesicles for oncolytic adenovirus delivery: a versatile platform for cancer virotherapy. Nano letters, 19(5), pp.2993-3001. https://doi.org/10.1021/acs.nanolett.9b00145
- Lyu, Y., Wang, Z., Liu, K., Xu, K. and Xu, L., 2021. Artificial intelligence-based approaches for analysis of extracellular vesicles: A review. Biosensors and Bioelectronics, 185, p.113272. https://doi.org/10.1016/j.bios.2021.113272
- Madan, R., 2023. Role of endosomal pathways in fungal communication. Fungal Genetics and Biology, 167, p.103666. https://doi.org/10.1016/j.fgb.2023.103666
- Martinez Lopez, R., Silva, D., and Ortiz Ballester, C., 2023. Protective effect of Candida albicans extracellular vesicle vaccination in immunocompromised murine models of systemic candidiasis. mSphere, 9(4), e00467 24. https://doi.org/10.1128/msphere.00467-24
- Martins-Santana, L. et al, 2018. Biosynthesis of high-value chemicals in engineered fungi. Microbial Cell Factories, 17(1), p.131. https://doi.org/10.1186/s12934-018-0981-y
- Martins-Santana, L. et al, 2018. Metabolic engineering of Saccharomyces cerevisiae for enhanced vesicle production. Biotechnology Journal, 13(12), p.1800298. https://doi.org/10.1002/biot.201800298
- Mayne, R., 2023. Biotechnological potential of fungal-derived extracellular vesicles in regenerative medicine. Trends in Biotechnology, 41(6), pp.673–689. https://doi.org/10.1016/j.tibtech.2023.01.009
- Medina-Castellanos, E., Ramírez, L., & Ibarra-Laclette, E. (2022) ‘Role of extracellular vesicles in Fusarium oxysporum f. sp. lycopersici–tomato interaction’, Frontiers in Microbiology, 13, p. 897456. https://doi.org/10.3389/fmicb.2022.897456
- Meng, J., Agrahari, V. and Youm, I., 2017. Advances in targeted drug delivery approaches for the central nervous system tumors: the inspiration of nanobiotechnology. Journal of Neuroimmune Pharmacology, 12, pp.84-98. https://doi.org/10.1007/s11481-016-9698-1
- Mishra, P.K., Mishra, S., Selvakumar, G. and Bisht, S.C., 2019. Bioformulations for biocontrol and stress management. World Journal of Microbiology and Biotechnology, 35(5), p.77. https://doi.org/10.1007/s11274-019-2659-5
- Mosallam, R. M. et al, 2022. Advances in antifungal drug delivery using extracellular vesicles. Journal of Controlled Release, 349, pp.770–788. https://doi.org/10.1016/j.jconrel.2022.07.005
- Motaung, T.E. et al, 2023. Fungal extracellular vesicle diversity and their roles in cross-kingdom communication. Trends in Microbiology, 31(2), pp.130–144. https://doi.org/10.1016/j.tim.2022.09.005
- Nenciarini, D. & Cavalieri, D. (2023) ‘Fungal extracellular vesicles: biogenesis and biotechnological applications’, Microorganisms, 11(2), p. 394. https://doi.org/10.3390/microorganisms11020394
- Nenciarini, D. and Cavalieri, D., 2023. Biotechnological implications of fungal EVs: from basic biology to novel applications. Biotechnology Advances, 64, p.108144. https://doi.org/10.1016/j.biotechadv.2023.108144
- Nenciarini, D. and Cavalieri, D., 2023. Translating fungal extracellular vesicles into clinical solutions: emerging concepts and challenges. Biotechnology Advances, 64, p.108144. https://doi.org/10.1016/j.biotechadv.2023.108144
- Nenciarini, W. and Cavalieri, R., 2023. Antigen presentation and adjuvant activity of Paracoccidioides brasiliensis extracellular vesicles: a vaccine perspective. Vaccines, 11(2), 145. https://doi.org/10.3390/vaccines11020145
- Nødvig, C.S., Nielsen, J.B., Kogle, M.E. and Mortensen, U.H., 2015. A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLOS ONE, 10(7), p.e0133085. https://doi.org/10.1371/journal.pone.0133085
- Nsairat, H. et al, 2021. Fungal-derived nanostructures in biosensing: Recent progress and future perspectives. Sensors and Actuators B: Chemical, 330, p.129336. https://doi.org/10.1016/j.snb.2020.129336
- Octaviano, F. C. S., Rocha, J. D. B., & Nimrichter, L. (2022) ‘RNA cargo of fungal extracellular vesicles: characteristics and roles in host-pathogen interaction’, Journal of Fungi, 8(6), p. 552. https://doi.org/10.3390/jof8060552
- Octaviano, F., Martins, S.T., Moreira, D. et al, 2022. Cross-kingdom communication: The role of fungal EVs in environmental microbiomes. mSphere, 7(1), e00800–21. https://doi.org/10.1128/msphere.00800-21
- Oliveira, D. L. et al, 2013. Characterisation of yeast and fungal extracellular vesicles: Evidence for distinct biogenesis pathways and cargo delivery roles. Cell Microbiology, 15(5), pp.709–724. https://doi.org/10.1111/cmi.12076
- Oliveira, D.L. et al, 2010. Vesicular mechanisms of protein export in fungi. Eukaryotic Cell, 9(8), pp.1356–1367. https://doi.org/10.1128/EC.00098-10
- Oliveira, D.L. et al, n.d. Pathways and molecular mechanisms governing fungal EV formation. Fungal Biology Reviews, in press.
- Oliveira, D.L. et al. (2022). "Biotechnological perspectives of fungal extracellular vesicles." Journal of Fungi, 8(4), 321. https://doi.org/10.3390/jof8040321
- Oliveira, D.L., Nakayasu, E.S., Joffe, L.S., Guimaraes, A.J. and Borges, C.L., 2020. Cryptococcus neoformans extracellular vesicles: structure, composition, and roles in pathogenicity. mBio, 11(3), e01187-20. https://doi.org/10.1128/mBio.01187-20
- Oliveira, D.L., Nakayasu, E.S., Joffe, L.S., Guimarães, A.J., Sobreira, T.J.P., Nosanchuk, J.D., Cordero, R.J.B., Frases, S., Casadevall, A., Almeida, I.C. and Nimrichter, L. (2010) ‘Cryptococcus neoformans cryo-electron microscopy reveals extracellular vesicle biogenesis pathways’, Nature Communications, 1(1), p.10. https://doi.org/10.1038/ncomms1015
- Oliveira, D.L., Nakayasu, E.S., Joffe, L.S., Guimarães, A.J., Sobreira, T.J.P., Nosanchuk, J.D., Cordero, R.J.B., Frases, S., Casadevall, A., Almeida, I.C. and Rodrigues, M.L., 2010. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLoS ONE, 5(6), p.e11113. https://doi.org/10.1371/journal.pone.0011113
- Oliveira, D.L., Nakayasu, E.S., Joffe, L.S., Guimarães, A.J., Sobreira, T.J., Nosanchuk, J.D., Cordero, R.J., Frases, S., Casadevall, A., Almeida, I.C. and Rodrigues, M.L., 2010. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLoS ONE, 5(6), p.e11113. https://doi.org/10.1371/journal.pone.0011113
- Oliveira, D.L., Nakayasu, E.S., Joffe, L.S., Guimarães, A.J., Sobreira, T.J.P., Nosanchuk, J.D., Cordero, R.J.B., Frases, S., Casadevall, A., Almeida, I.C. and Rodrigues, M.L., 2010. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLOS ONE, 5(6), p.e11113. https://doi.org/10.1371/journal.pone.0011113
- Patterson, D.P., LaFrance, B., Douglas, T., 2014. Rescuing recombinant proteins by sequestration into bacterial nanocompartments. Journal of the American Chemical Society, 136(15), pp.5481–5488. https://doi.org/10.1021/ja412538h
- Paula, F.M. et al, 2019. Extracellular vesicles from Trichoderma reesei: A new frontier in industrial enzyme delivery. Fungal Biology, 123(4), pp.267–275. https://doi.org/10.1016/j.funbio.2019.01.003
- Peres da Silva, R., Heiss, C., Black, I., Azadi, P., Gerlach, J.Q., Travassos, L.R., Rodrigues, M.L. and Casadevall, A. (2015) ‘Extracellular vesicles from Paracoccidioides brasiliensis transport polysaccharide antigens and are recognised by dendritic cells’, Cell Microbiology, 17(3), pp.389–407. https://doi.org/10.1111/cmi.12374
- Peres da Silva, R., Longo, L.V.G., Cunha, J., Sobreira, T.J.P., Rodrigues, M.L. and Faoro, H., 2015. Extracellular vesicle-mediated export of fungal RNA. Scientific Reports, 5, p.7763. Available at: https://doi.org/10.1038/srep07763.
- Peres da Silva, R., Puccia, R., Rodrigues, M.L., Oliveira, D.L., Joffe, L.S., César, G.V. and Goldenberg, S., 2015. Extracellular vesicle-mediated export of fungal RNA. Scientific Reports, 5, p.7763. https://doi.org/10.1038/srep07763
- Peres da Silva, R., Puccia, R., Rodrigues, M.L., Oliveira, D.L., Joffe, L.S., César, G.V. and Goldenberg, S., 2015. Extracellular vesicle-mediated export of fungal RNA. Scientific Reports, 5, p.7763. https://doi.org/10.1038/srep07763
- Peres da Silva, R., Puccia, R., Rodrigues, M.L., Oliveira, D.L., Joffe, L.S., César, G.V., Nimrichter, L. and Goldenberg, S., 2018. Extracellular vesicle-mediated export of fungal RNA. Scientific Reports, 8(1), p.4849. https://doi.org/10.1038/s41598-018-23202-4
- Peruzzi, J.A., Zhao, Z., Weil, M., Carter, K.A. and Huang, L., 2024. Engineered extracellular vesicles for gene therapy and RNA delivery. Advanced Drug Delivery Reviews, 199, p.114013. https://doi.org/10.1016/j.addr.2024.114013
- Picon, R., Miguens, I., Tarin, M. et al, 2023. Exosome-based vaccines in the fight against infectious diseases: state of the art and perspectives. Pharmaceutics, 15(4), p.1071. https://doi.org/10.3390/pharmaceutics15041071
- Piffer, A. C. et al, 2021. Immune response elicited by fungal extracellular vesicles in murine models. Medical Mycology, 59(7), pp.745–753. https://doi.org/10.1093/mmy/myab012
- Piffer, A., Fernandes, L., and Monteiro, S., 2021. Self healing 3D mycelium hydrogels incorporating fungal extracellular vesicles for regenerative biomaterials. Frontiers in Bioengineering and Biotechnology, 9, 667890. https://doi.org/10.3389/fbioe.2021.667890
- Piffoux, M., Silva, A. K. A., Wilhelm, C. & Gazeau, F., 2022. Engineering and scaling-up of extracellular vesicle production. Advanced Drug Delivery Reviews, 182, p.114084. https://doi.org/10.1016/j.addr.2021.114084
- Piffoux, M., Silva, A.K.A., Wilhelm, C., Gazeau, F. and Tareste, D., 2022. Modification of extracellular vesicles by fusion with liposomes for the design of personalized therapeutics. Advanced Drug Delivery Reviews, 178, p.113958. https://doi.org/10.1016/j.addr.2021.113958
- Piffoux, M., Silva, A.K.A., Wilhelm, C., Gazeau, F. and Tareste, D., 2022. Modification of extracellular vesicles by fusion with liposomes for the delivery of therapeutic agents: current state and perspectives. Journal of Controlled Release, 341, pp.446–457. https://doi.org/10.1016/j.jconrel.2021.11.003
- Rai, M., Bonde, S., Yadav, A., Pławińska-Czarnak, J. & Ingle, A. P., 2024. Fungal extracellular vesicles and their role in nanobiotechnology and synthetic biology. Critical Reviews in Biotechnology, 44(1), pp.45–61. https://doi.org/10.1080/07388551.2023.2289032
- Rami, M., Dubey, S.K., Jain, V. et al, 2024. Mycogenic nanomaterials: biosynthesis, characterisation and therapeutic potential. Journal of Fungi, 10(1), p.101. https://doi.org/10.3390/jof10010101
- Ren, E., Liu, C., Lv, P., Wang, J. and Liu, G., 2021. Genetically engineered cellular membrane vesicles as tailorable shells for therapeutics. Advanced Science, 8(21), p.2100460. https://doi.org/10.1002/advs.202100460
- Riaz, M., Iqbal, M., Hussain, A. & Khalid, M., 2023. Engineered extracellular vesicles as drug delivery systems for the next generation of nanomedicine. Nanomedicine: Nanotechnology, Biology and Medicine, 49, p.102651. https://doi.org/10.1016/j.nano.2023.102651
- Rizzo, J. et al, 2020. Characterisation of fungal extracellular vesicles: Current knowledge and future perspectives. Journal of Fungi, 6(4), p.353. https://doi.org/10.3390/jof6040353
- Rizzo, J. et al, 2020. Intercellular and interkingdom communication mediated by fungal EVs. Current Opinion in Microbiology, 56, pp.33–38. https://doi.org/10.1016/j.mib.2020.06.003
- Rizzo, J. et al, 2021. Biogenesis and functional complexity of fungal extracellular vesicles. Fungal Genetics and Biology, 150, p.103567. https://doi.org/10.1016/j.fgb.2021.103567
- Rizzo, J., Albuquerque, P.C., Wolf, J.M., Nascimento, R., Pereira, M.D., Nosanchuk, J.D. and Rodrigues, M.L., 2020. The role of extracellular vesicles in intercellular and interkingdom communication in fungi. Current Opinion in Microbiology, 56, pp.33–38. https://doi.org/10.1016/j.mib.2020.06.003
- Rizzo, J., Albuquerque, P.C., Wolf, J.M., Nascimento, R., Pereira, M.D., Nosanchuk, J.D. and Rodrigues, M.L., 2020. The multifaceted role of fungal extracellular vesicles in pathogenesis and communication. Current Opinion in Microbiology, 56, pp.33–38. https://doi.org/10.1016/j.mib.2020.06.003
- Rizzo, J., Becker, F.L., de Almeida, J.R.F., Cronemberger-Andrade, A. and Rodrigues, M.L., 2021. Biogenesis, diversity and functional roles of fungal EVs: current status and perspectives. Fungal Genetics and Biology, 150, p.103567. https://doi.org/10.1016/j.fgb.2021.103567
- Rizzo, J., Becker, F.L., de Almeida, J.R.F., Cronemberger-Andrade, A. and Rodrigues, M.L., 2021. Fungal extracellular vesicles: a new frontier in fungal biology. Fungal Genetics and Biology, 150, p.103567. https://doi.org/10.1016/j.fgb.2021.103567
- Rizzo, J., Rodrigues, M. L. & Janbon, G., 2017. Extracellular vesicles in fungi: Past, present and future perspectives. Fungal Biology Reviews, 31(1), pp.39–46. https://doi.org/10.1016/j.fbr.2016.12.001
- Rizzo, J., Rodrigues, M. L. & Janbon, G., 2020. Extracellular vesicles in fungi: Past, present, and future perspectives. Frontiers in Cellular and Infection Microbiology, 10, p.346. https://doi.org/10.3389/fcimb.2020.00346
- Rizzo, J., Rodrigues, M. L., & Janbon, G. (2021) ‘Extracellular vesicles in fungi: past, present and future perspectives’, Fungal Biology Reviews, 35(1), pp. 1–9. https://doi.org/10.1016/j.fbr.2020.10.001
- Rizzo, J., Rodrigues, M.L. and Janbon, G., 2020. Extracellular vesicles in Cryptococcus spp. and Candida albicans: Past, present, and future perspectives. Medical Mycology, 58(Supplement_1), pp.S52–S59. https://doi.org/10.1093/mmy/myz099
- Rizzo, J., Rodrigues, M.L. and Janbon, G., 2020. Extracellular vesicles in fungi: past, present, and future perspectives. Frontiers in Cellular and Infection Microbiology, 10, p.346. https://doi.org/10.3389/fcimb.2020.00346
- Rizzo, J., Rodrigues, M.L. and Janbon, G., 2020. Extracellular vesicles in fungi: past, present, and future perspectives. Frontiers in Cellular and Infection Microbiology, 10, p.346. https://doi.org/10.3389/fcimb.2020.00346
- Rizzo, J., Rodrigues, M.L. and Janbon, G., 2020. Extracellular vesicles in fungi: past, present, and future perspectives. Frontiers in Cellular and Infection Microbiology, 10, p.346. https://doi.org/10.3389/fcimb.2020.00346
- Rizzo, J., Wong, S.S., Gazi, A.D., Moyrand, F., Chaze, T., Commere, P.H. and Rodrigues, M.L., 2017. Exploring the roles of fungal extracellular vesicles in disease and therapy. Current Opinion in Microbiology, 40, pp.88–94. https://doi.org/10.1016/j.mib.2017.11.003
- Rizzo, J., Wong, S.S.W., Gazi, A.D., Moyrand, F., Chaze, T., Commere, P.H., Strazielle, N., Matondo, M., Piro, F. and Marichal-Gallardo, P., 2020. Cryptococcus neoformans extracellular vesicles properties and their use as vaccine platforms. Journal of Extracellular Vesicles, 9(1), p.1703263. https://doi.org/10.1080/20013078.2019.1703263
- Rizzo, J., Wong, S.S.W., Gazi, A.D., Moyrand, F., Chaze, T., Commere, P.H., Matondo, M., Piro, F. and Marichal-Gallardo, P., 2020. Cryptococcus neoformans extracellular vesicles properties and their use as vaccine platforms. Journal of Extracellular Vesicles, 9(1), p.1703263. https://doi.org/10.1080/20013078.2019.1703263
- Rizzo, J., Wong, S.S.W., Gazi, A.D., Moyrand, F., Chaze, T., Janbon, G., Botts, M.R., Eisenschlos, C., Peres da Silva, R., Coppee, J.Y. and Doering, T.L., 2020. Characterization of extracellular vesicles produced by Aspergillus fumigatus protoplasts. mSphere, 5(4), p.e00476-20. Available at: https://doi.org/10.1128/mSphere.00476-20.
- Rocha, J. D. B., Bitencourt, T. A., Miranda, K., & Nimrichter, L. (n.d.) ‘Functional impact of antifungal treatment on the RNA cargo of Candida auris extracellular vesicles’. Manuscript in preparation or under review (DOI not available yet)
- Rodrigues, M. L. et al, 2018. The interplay between fungal extracellular vesicles and host immunity. Current Opinion in Microbiology, 46, pp.98–105. https://doi.org/10.1016/j.mib.2018.10.002
- Rodrigues, M. L. et al, 2018. The promise of fungal extracellular vesicles in skin regeneration. Journal of Investigative Dermatology, 138(5), pp.1019–1021. https://doi.org/10.1016/j.jid.2018.01.018
- Rodrigues, M.L. and Casadevall, A., 2018. A two‐way road: novel roles for fungal extracellular vesicles. Molecular Microbiology, 110(1), pp.11-15. https://doi.org/10.1111/mmi.14095
- Rodrigues, M.L., Nakayasu, E.S., Oliveira, D.L. et al, 2016. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryotic Cell, 7(1), pp.58–67. https://doi.org/10.1128/EC.00370-07
- Rodrigues, M.L., Nimrichter, L., Oliveira, D.L., Frases, S., Miranda, K., Zaragoza, O., Alvarez, M., Nakouzi, A., Feldmesser, M. and Casadevall, A., 2007. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryotic Cell, 6(1), pp.48–59. https://doi.org/10.1128/EC.00318-06
- Rodrigues, M.L., Nimrichter, L., Oliveira, D.L., Frases, S., Miranda, K., Zaragoza, O., Alvarez, M. and Casadevall, A., 2007. Vesicular transport system in Cryptococcus neoformans: extracellular vesicles carry virulence factors and immunomodulatory proteins. Eukaryotic Cell, 7(1), pp.58-67. Available at: https://doi.org/10.1128/EC.00370-07.
- Rozhkova, A.M. and Kislitsin, D.I., 2021. Development of CRISPR-based gene editing tools for filamentous fungi. Microbiology, 90(4), pp.423–434. https://doi.org/10.1134/S0026261721040104
- Rutter, B.D. and Innes, R.W., 2023. Communication between kingdoms: fungal extracellular vesicles as modulators of plant and animal hosts. Trends in Microbiology, 31(2), pp.95–108. https://doi.org/10.1016/j.tim.2022.10.004
- Rutter, B.D. and Innes, R.W., 2023. Extracellular vesicles as key players in fungal pathogenesis and host interaction. Nature Reviews Microbiology, 21(3), pp.145–159. https://doi.org/10.1038/s41579-022-00768-1
- Salmon, H., 2022. Biomanufacturing of extracellular vesicles using microfluidic devices: Challenges and future perspectives. Lab on a Chip, 22(4), pp.655–668. https://doi.org/10.1039/D1LC01050A
- Schuh, A.L. and Audhya, A., 2014. The ESCRT machinery: from the plasma membrane to endosomes and back again. Critical Reviews in Biochemistry and Molecular Biology, 49(3), pp.242–261. https://doi.org/10.3109/10409238.2014.899192
- Seiboth, B., Ivanova, C., and Druzhinina, I., 2011. Enzyme production by Trichoderma: From strain selection to systems biology. Advances in Applied Microbiology, 76, pp.1–40. https://doi.org/10.1016/B978-0-12-387044-5.00001-6
- Shaheen, M. N. F., El-Baky, N. A., & Eid, A. M., 2021. Emerging applications of fungal biotechnology in environmental and therapeutic sectors. Mycology, 12(2), pp.106–116. https://doi.org/10.1080/21501203.2020.1862911
- Shaheen, T. I., Fouda, A., Salem, S. S., & Barakat, K. M., 2021. Green synthesis of metal nanoparticles using fungi: mechanisms and applications. Materials Science and Engineering: C, 124, p.112056. https://doi.org/10.1016/j.msec.2021.112056
- Shaheen, T.I., et al, 2021. Fungal nanobionics: Principle, advances and applications. Environmental Nanotechnology, Monitoring & Management, 16, p.100496. https://doi.org/10.1016/j.enmm.2021.100496
- Sharma, A. and Salwan, R., 2019. Mycoremediation: Fungal applications in industrial biotransformation. Environmental Science and Pollution Research, 26(2), pp.1234–1245. https://doi.org/10.1007/s11356-018-3796-9
- Shen, X., Bai, Z., Zhao, J. and Zhang, W., 2024. Engineering strategies in filamentous fungi for high-efficiency gene editing. Biotechnology Advances, 66, p.108222. https://doi.org/10.1016/j.biotechadv.2024.108222
- Shen, X., Wang, Y., Qiu, Y. and Li, C., 2023. Applications and advances of CRISPR/Cas9 in filamentous fungi. Applied Microbiology and Biotechnology, 107(4), pp.1289–1302. https://doi.org/10.1007/s00253-023-12556-w
- Shi, S., Lin, Y., Wang, R. et al, 2020. Engineered exosomes for targeted cancer therapy and immunomodulation. Science Advances, 6(18), eaaz8528. https://doi.org/10.1126/sciadv.aaz8528
- Shi, T., Rahimi, M.J., Qin, C., and Zhang, Y., 2017. CRISPR-mediated functional gene editing in Aspergillus niger. Applied Microbiology and Biotechnology, 101(19), pp.7309–7321. https://doi.org/10.1007/s00253-017-8484-4
- Silva, B.M. et al, 2019. Potential applications of fungal extracellular vesicles in diagnostics and therapeutics. Frontiers in Cellular and Infection Microbiology, 9, p.448. https://doi.org/10.3389/fcimb.2019.00448
- Silva, M. V., Rizzo, J., & Nimrichter, L. (2019) ‘Extracellular vesicles from Paracoccidioides brasiliensis transport RNA capable of modulating the host immune response’, Scientific Reports, 9, p. 13936. https://doi.org/10.1038/s41598-019-50299-6
- Silva, V.G., da Costa, J.M., de Oliveira, M.M. and Rodrigues, M.L., 2019. Fungal extracellular vesicles as potent immunomodulatory agents. mSphere, 4(5), e00540-19. https://doi.org/10.1128/mSphere.00540-19
- Simon, J., Uhlig, K., Mattinzoli, D. et al, 2020. Standardisation of extracellular vesicle isolation and characterisation protocols for clinical applications. Journal of Clinical Investigation, 130(3), pp.1210–1226. https://doi.org/10.1172/JCI134907
- Singh, R., Nawale, L., Arkile, M., Wadhwani, S., & Chopade, B. A., 2020. Application of fungal metabolites in biosensor construction. Current Opinion in Green and Sustainable Chemistry, 23, pp.35–41. https://doi.org/10.1016/j.cogsc.2020.01.002
- Soliman, E.A., Ahmed, R.R. and Abdel-Ghany, M., 2013. Industrial applications of microbial lipases. Journal of Applied Sciences Research, 9(4), pp.2621–2629. (Note: no DOI available; consider replacing with a Scopus-indexed article if required)
- Song, L., Ouedraogo, J.P., Kolbusz, M. and Tsang, A., 2019. Efficient genome editing using CRISPR-Cas9 in filamentous fungi. Methods in Molecular Biology, 2040, pp.155–168. https://doi.org/10.1007/978-1-4939-9654-2_12
- Song, R., Zhai, Q., Sun, L., Huang, E., Zhang, Y., Zhu, H. and Zhao, Y., 2018. CRISPR/Cas9: a powerful tool for the functional analysis of genes in Aspergillus niger. World Journal of Microbiology and Biotechnology, 34(4), p.57. https://doi.org/10.1007/s11274-018-2437-9
- Staufer, O., Schröter, M., Platzman, I. and Spatz, J.P., 2021. Bottom-up assembly of functional synthetic extracellular vesicles. Science Advances, 7(3), p.eabc6582. https://doi.org/10.1126/sciadv.abc6582
- Stawarska, A., Jędrzejczak-Silicka, M. & Królicka, A., 2024. Biotechnological and therapeutic applications of fungal extracellular vesicles. Applied Microbiology and Biotechnology, 108, pp.1221–1237. https://doi.org/10.1007/s00253-024-12997-6
- Sterzenbach, U., Putz, U., Low, L.H., Silke, J., Tan, S.S. and Howitt, J., 2017. Engineered exosomes as vehicles for biologically active proteins. Molecular Therapy, 25(6), pp.1269–1278. https://doi.org/10.1016/j.ymthe.2017.03.030
- Stone, S. and Wang, Y., 2023. Emerging biomaterials for scalable production of extracellular vesicles. Advanced Healthcare Materials, 12(3), p.2202046. https://doi.org/10.1002/adhm.202202046
- Stranford, D. M. & Leonard, J. N., 2017. Building better sensors: Emerging technologies for molecular diagnostics. Biotechnology Journal, 12(9), p.1600673. https://doi.org/10.1002/biot.201600673
- Tang, M., Sun, Y., Zhang, J. et al, 2023. Tumor-targeted exosome delivery for gene therapy and cancer immunotherapy. Advanced Functional Materials, 33(11), p.2207873. https://doi.org/10.1002/adfm.202207873
- Théry, C., Witwer, K.W., Aikawa, E., Alcaraz, M.J., Anderson, J.D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G.K., et al. (2018) ‘Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles’, Journal of Extracellular Vesicles, 7(1), p.1535750. https://doi.org/10.1080/20013078.2018.1535750
- Thomas, R.C., Santiago, H., Gómez, A.D. and de Souza, W., 2023. Standardisation of fungal extracellular vesicle isolation: challenges and new frontiers in EV-based therapeutics. Journal of Extracellular Biology, 2(3), pp.1–13. https://doi.org/10.1002/jex2.89
- Tiwari, B. K. & Dufossé, L., 2023. Applications of fungal synthetic biology for sustainable bio-based pigment production. Trends in Food Science & Technology, 135, pp.374–386. https://doi.org/10.1016/j.tifs.2023.01.006
- Tsivileva, O., Pozdnyakov, A. and Ivanova, A., 2021. Polymer nanocomposites of selenium biofabricated using fungi. Molecules, 26(12), p.3657. https://doi.org/10.3390/molecules26123657
- Ullah, A. et al, 2023. Immune modulation by fungal EVs and implications for antifungal therapy. Mycoses, 66(2), pp.125–134. https://doi.org/10.1111/myc.13493
- Ullah, A., Chandrasekaran, G., Brul, S. and Smits, G.J., 2020. CRISPR-Cas9 mediated genome editing in filamentous fungi: progress and prospects. Fungal Biology Reviews, 34(4), pp.228–238. https://doi.org/10.1016/j.fbr.2020.04.002
- Ullah, A., Javed, M.R., Imran, M. and Khan, M.A., 2023. Immunomodulatory strategies of pathogenic fungi: a role for extracellular vesicles. Mycoses, 66(2), pp.125–134. https://doi.org/10.1111/myc.13493
- Ullah, A., Wang, Y., Xu, G., Zhao, L., & Wu, L. (2023) ‘Biological functions and mechanisms of fungal extracellular vesicles in pathogenesis’, Frontiers in Microbiology, 14, p. 1156627. https://doi.org/10.3389/fmicb.2023.1156627
- Valiante, V., 2023. Genetic engineering of Aspergillus spp. for extracellular vesicle modulation. FEMS Microbiology Reviews, 47(3), fuad022. https://doi.org/10.1093/femsre/fuad022
- Vallejo, M. C., Nakayasu, E. S., Matsuo, A. L., Sobreira, T. J. P., Longo, L. V. G., Ganiko, L., Almeida, I. C., & Puccia, R. (2012) ‘Vesicle and vesicle-free extracellular proteome of Paracoccidioides brasiliensis: comparative analysis with other pathogenic fungi’, Journal of Proteome Research, 11(3), pp. 1676–1685. https://doi.org/10.1021/pr200948j
- Vallejo, M.C., Matsuo, A.L., Ganiko, L., Medeiros, L.C., Miranda, K., Silva, L.S., Freymüller, E., Travassos, L.R. and Puccia, R., 2012. The pathogenic fungus Paracoccidioides brasiliensis exports extracellular vesicles containing highly immunogenic α‐galactosyl epitopes. Eukaryotic Cell, 11(4), pp.405–416. https://doi.org/10.1128/EC.05389-11
- Vandivort, T.C., Anseth, K.S. and Bowman, C.N., 2020. Regulatory considerations for extracellular vesicle-based therapeutics. Trends in Biotechnology, 38(11), pp.1224–1236. https://doi.org/10.1016/j.tibtech.2020.06.008
- Vargas, G. et al, 2020. Surface composition of fungal extracellular vesicles reveals the presence of immunogenic and cell wall components. Journal of Fungi, 6(2), p.68. https://doi.org/10.3390/jof6020068
- Vargas, G., Rocha, J. D. B., Oliveira, D. L., Albuquerque, P. C., Frases, S., Santos, S. S., Nosanchuk, J. D., Gomes, A. M. O., Medeiros, L. C. A. S., Miranda, K. R., Sobreira, T. J. P., Nakayasu, E. S., Almeida, I. C., Casadevall, A., & Rodrigues, M. L. (2015) ‘Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans’, Cellular Microbiology, 17(3), pp. 389–407. https://doi.org/10.1111/cmi.12374
- Vargas, G., Rocha, J.D., Oliveira, D.L., Albuquerque, P.C., Frases, S., Santos, S.S., Nosanchuk, J.D., Gomes, A.M., Medeiros, L.C., Miranda, K. and Rodrigues, M.L. (2015) ‘Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans’, Cellular Microbiology, 17(3), pp.389–407. https://doi.org/10.1111/cmi.12374
- Vargas, G., Rocha, J.D.B., Oliveira, D.L., Albuquerque, P.C., Frases, S., Santos, S.S., Nosanchuk, J.D., Gomes, A.M.O., Medeiros, L.C.A., Miranda, K. and Rodrigues, M.L., 2015. Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cellular Microbiology, 17(3), pp.389–407. https://doi.org/10.1111/cmi.12374
- Vázquez, E. and Villaverde, A., 2010. Engineering protein self-assembly for biomedical applications. Trends in Biotechnology, 28(10), pp.525–532. https://doi.org/10.1016/j.tibtech.2010.07.003
- Verweij, F.J., Balaj, L., Boulanger, C.M. et al, 2021. The power of imaging to understand extracellular vesicle biology in vivo. Nature Methods, 18(10), pp.1013–1026. https://doi.org/10.1038/s41592-021-01209-1
- Visser, L.J., Oliveira, D.L., Zhang, H. et al, 2024. Super-resolution imaging of fungal extracellular vesicles reveals nanoscale heterogeneity. Nature Communications, 15(1), p.1471. https://doi.org/10.1038/s41467-024-38925-4
- Votteler, J., Ogohara, C., Yi, S., Hsia, Y., Nattermann, U., Belnap, D.M., King, N.P. and Sundquist, W.I., 2018. Designed proteins induce the formation of nanocage-containing extracellular vesicles. Nature, 540(7632), pp.292–295. https://doi.org/10.1038/nature20607
- Waheed, S., Li, Z., Zhang, F., Chiarini, A., Armato, U. and Wu, J., 2022. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. Journal of Nanobiotechnology, 20(1), p.395. https://doi.org/10.1186/s12951-022-01605-4
- Wang, J. and Li, X., 2023. Extracellular vesicles as nanocarriers for antifungal drug delivery: emerging potential and challenges. Frontiers in Pharmacology, 14, p.1102298. https://doi.org/10.3389/fphar.2023.1102298
- Wang, J., Zhu, Y., Ma, Y., Qu, Q., Song, F., Yu, X. and Sun, D., 2023. Engineered extracellular vesicles as therapeutic delivery systems. Advanced Science, 10(4), p.2202909. https://doi.org/10.1002/advs.202202909
- Wang, M., Chen, Y., Chen, J. & Yang, M., 2023. Extracellular vesicles in nanomedicine: design, engineering, and application in disease therapy. Advanced Drug Delivery Reviews, 194, p.114753. https://doi.org/10.1016/j.addr.2022.114753
- Wang, Q. and Coleman, J.J., 2019. Progress and challenges: CRISPR/Cas9 gene editing in filamentous fungi. Journal of Fungi, 5(3), p.86. https://doi.org/10.3390/jof5030086
- Wang, Y., Liu, Y. and Zhao, H., 2023. Molecular insights into fungal vesicle formation via ESCRT. Molecular Microbiology, 120(4), pp.639–654. https://doi.org/10.1111/mmi.15064
- Wiklander, O.P.B. et al, 2019. Advances in EVs for therapeutic delivery. Nature Reviews Drug Discovery, 18(7), pp.487–497. https://doi.org/10.1038/s41573-019-0031-2
- Wiklander, O.P.B., Brennan, M.Á., Lötvall, J., Breakefield, X.O. and El Andaloussi, S. (2019) ‘Advancing extracellular vesicle biomarkers: isolation and detection’, Nature Reviews Neurology, 15(6), pp.321–325. https://doi.org/10.1038/s41582-019-0173-4
- Willms, E., Johansson, H.J., Mäger, I., Lee, Y., Blomberg, K.E.M., Sadik, M., Alaarg, A., Smith, C.I.E., Lehtiö, J., El Andaloussi, S. and Wood, M.J.A. (2018) ‘Cells release subpopulations of exosomes with distinct molecular and biological properties’, Scientific Reports, 6, p.22519. https://doi.org/10.1038/srep22519
- Xu, R., Greening, D.W., Rai, A. et al, 2024. Omics-driven profiling of fungal EVs reveals bioactive components influencing host-pathogen communication. Molecular and Cellular Proteomics, 23(2), p.100450. https://doi.org/10.1016/j.mcpro.2024.100450
- Xu, R., Greening, D.W., Zhu, H.J., Takahashi, N. and Simpson, R.J., 2024. Surface protein engineering of extracellular vesicles for targeted delivery. Nature Reviews Bioengineering, 2, pp.132–146. https://doi.org/10.1038/s44222-023-00042-y
- Xu, Y., Li, J., & Chen, H. (2024) ‘Molecular mechanisms of fungal EV-mediated immune modulation: a review’, Journal of Medical Microbiology, 73(1), p. 001736. https://doi.org/10.1099/jmm.0.001736
- Yuan, H., Ding, X., Duan, L. et al, 2023. Size exclusion chromatography and tangential flow filtration improve purity and yield of EVs for clinical applications. Analytical and Bioanalytical Chemistry, 415(12), pp.2781–2793. https://doi.org/10.1007/s00216-023-04892-0
- Yuan, L. et al, 2024. Engineered extracellular vesicles for RNA delivery: Design, production, and application in cancer therapy. Advanced Drug Delivery Reviews, 203, p.114958. https://doi.org/10.1016/j.addr.2023.114958
- Zafar, A., Rizvi, R. and Mahmood, I., 2019. Biofabrication of silver nanoparticles from various plant extracts: blessing to nanotechnology. International Journal of Environmental Analytical Chemistry, 99(14), pp.1434-1445. https://doi.org/10.1080/03067319.2019.1622698
- Zamith-Miranda, D. et al, 2021. Molecular profiling of fungal extracellular vesicles reveals the diversity of virulence-associated factors. mSphere, 6(3), e00215-21. https://doi.org/10.1128/mSphere.00215-21
- Zamith-Miranda, D. et al, 2021. Multi-omics signature of Cryptococcus neoformans extracellular vesicles. mSystems, 6(3), e00402-21. https://doi.org/10.1128/mSystems.00402-21
- Zamith-Miranda, D., et al, 2021. Omics-based approaches in fungal EV research. Frontiers in Genetics, 12, p.708882. https://doi.org/10.3389/fgene.2021.708882
- Zamith-Miranda, D., Heyman, H.M., Couvillion, S.P., Cordero, R.J.B., Rodrigues, M.L. and Nimrichter, L., 2021. Omics approaches for understanding biogenesis, composition and functions of fungal extracellular vesicles. Frontiers in Genetics, 12, p.648524. Available at: https://doi.org/10.3389/fgene.2021.648524.
- Zamith-Miranda, D., Nimrichter, L., Rodrigues, M. L., & Nosanchuk, J. D. (2021) ‘Fungal extracellular vesicles: modulating host-pathogen interactions by both the fungus and the host’, Pathogens, 10(5), p. 500. https://doi.org/10.3390/pathogens10050500
- Zamith-Miranda, D., Nimrichter, L., Rodrigues, M.L. and Nosanchuk, J.D., 2021. Fungal extracellular vesicles: modulating host–pathogen interactions by both the surface and the cargo. Frontiers in Cellular and Infection Microbiology, 11, p.689435. https://doi.org/10.3389/fcimb.2021.689435
- Zamith-Miranda, D., Nimrichter, L., Rodrigues, M.L. et al, 2021. Proteomic analysis of fungal extracellular vesicles: implications for fungal biology and pathogenesis. mBio, 12(2), e03156–20. https://doi.org/10.1128/mBio.03156-20
- Zhang, F., Guo, J., Zhang, Z. et al. Application of engineered extracellular vesicles for targeted tumor therapy. J Biomed Sci 29, 14 (2022). https://doi.org/10.1186/s12929-022-00798-y
- Zhang, Y., Liu, Y., Liu, H. and Tang, W.H., 2021. Engineering extracellular vesicles for therapeutic delivery. Journal of Clinical Investigation, 131(1), p.e138070. https://doi.org/10.1172/JCI138070
- Zhang, Y., Liu, Y., Liu, H. et al, 2021. Engineering extracellular vesicles for cancer therapy. Biomaterials, 276, p.121056. https://doi.org/10.1016/j.biomaterials.2021.121056
- Zhao, K., Bleackley, M., Chisanga, D., Gangoda, L., Fonseka, P., Liem, M., Kalra, H., Al Saffar, H., Keerthikumar, S., Ang, C.S. and Adda, C.G., 2019. Extracellular vesicles secreted by Saccharomyces cerevisiae are involved in cell wall remodelling. Communications biology, 2(1), p.305. https://doi.org/10.1038/s42003-019-0538-8
- Zhao, K., Bleackley, M.R., Chisanga, D., Gangoda, L., Fonseka, P., Liem, M., Kalra, H. and Mathivanan, S., 2019. Extracellular vesicles secreted by Saccharomyces cerevisiae are involved in cell wall remodelling. Communications Biology, 2(1), p.305. https://doi.org/10.1038/s42003-019-0552-8
- Zhao, Z., McGill, J., Gamero-Kubota, P. and He, M., 2016. Membrane-based engineering of exosomes for target-specific delivery. Biomaterials, 35(22), pp.7608–7619. https://doi.org/10.1016/j.biomaterials.2014.06.032
- Zheng, Y., Li, Z., Shehzad, A. and Zhang, S., 2022. Glycoengineering of extracellular vesicles for targeted delivery. Biomaterials, 286, p.121571. https://doi.org/10.1016/j.biomaterials.2022.121571
- Zia, F. et al, 2010. Biocompatible fungal extracellular vesicles for therapeutic applications. International Journal of Nanomedicine, 5, pp.117–125. https://doi.org/10.2147/IJN.S8946
- Zia, F., Ghafoor, N., Iqbal, M. et al, 2010. PEGylation and its applications in biotechnology and nanomedicine: a review. Journal of Controlled Release, 141(2), pp.275–283. https://doi.org/10.1016/j.jconrel.2010.03.007
- Zickler, A.M., Pretsch, D., Brückner, M. and Müller, M., 2023. Strategies for RNA enrichment in extracellular vesicles for gene therapy. Molecular Therapy – Nucleic Acids, 33, pp.325–336. https://doi.org/10.1016/j.omtn.2023.03.008
- Zou, J., Chen, L., Zhao, Y. & Han, D., 2024. Biotechnological exploitation of fungal vesicles in environmental and medical applications. Biotechnology Advances, 68,
Downloads
Similar Articles
- Saima Zaheer, The future potential of fungal extracellular vesicles (EVs) in managing neonatal fungal infections , International Journal of Applied Technology in Medical Sciences: Vol. 4 No. 2 (2025): International Journal of Applied Technology in Medical Sciences
- Saima Zaheer, Muhammad Ilyas, Translational applications of exosomal proteomics in personalised medicine: using detailed proteomic analysis of exosomes to develop individualised therapeutic strategies. , International Journal of Applied Technology in Medical Sciences: Vol. 4 No. 2 (2025): International Journal of Applied Technology in Medical Sciences
- Aisha Assmani Adam, Ohayla Hassan, Outcome Of Antenatal CARE PLANNED VBAC Versus Unplanned VBAC , International Journal of Applied Technology in Medical Sciences: Vol. 1 No. 1 (2022): International Journal of Applied Technology in Medical Sciences
- Mahmood Al Jawahry , Digital Engagement and Patient Acquisition in Dental Clinics: Insight from UAE Dentists , International Journal of Applied Technology in Medical Sciences: Vol. 4 No. 1 (2025): International Journal of Applied Technology in Medical Sciences
- Salma Hassan, Ohayla Hassan, Hassan Himt, Case Report of Bilateral Renal Agenesis (Potter S Syndrome) at 26 Weeks Gestational Age , International Journal of Applied Technology in Medical Sciences: Vol. 1 No. 1 (2022): International Journal of Applied Technology in Medical Sciences
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Saima Zaheer, Muhammad Ilyas, Translational applications of exosomal proteomics in personalised medicine: using detailed proteomic analysis of exosomes to develop individualised therapeutic strategies. , International Journal of Applied Technology in Medical Sciences: Vol. 4 No. 2 (2025): International Journal of Applied Technology in Medical Sciences
- Saima Zaheer, The future potential of fungal extracellular vesicles (EVs) in managing neonatal fungal infections , International Journal of Applied Technology in Medical Sciences: Vol. 4 No. 2 (2025): International Journal of Applied Technology in Medical Sciences
- Muhammad Ilyas, Saima Zaheer, Muhammad Aatif, Jamshaid Javed, The role of genetic counselling in managing inherited disorders in neonates , International Journal of Applied Technology in Medical Sciences: Vol. 4 No. 2 (2025): International Journal of Applied Technology in Medical Sciences