Protocols, Technologies, and Global Deployment Challenges for Quantum Key Distribution
Abstract
Quantum Key Distribution (QKD) offers a revolutionary method for achieving information-theoretic security in communication systems by leveraging quantum mechanical principles. With foundational protocols like BB84 and newer innovations such as phase-matching and device-independent QKD, the field has rapidly progressed from theoretical constructs to real-world prototypes. Recent advancements in integrated photonics, high-speed key generation, and satellite-based systems suggest a transformative potential for global cybersecurity infrastructure. However, significant challenges remain in extending secure communication distances, ensuring practical implementation security, reducing cost and size of components, and integrating QKD into existing network architectures. This paper reviews the state-of-the-art in QKD, discusses emerging trends such as chip-based and layered QKD systems, evaluates satellite and free-space deployments, and examines the practical limitations and solutions for long-distance and high-rate secure communications. It concludes by highlighting future directions including standardization, hybrid classical-quantum infrastructures, and software-defined QKD networks.
References
- Bennett, C. H., & Brassard, G. (1984). Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science, 560, 7–11. https://doi.org/10.1016/j.tcs.2014.05.025
- Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2002). Quantum cryptography. Reviews of Modern Physics, 74(1), 145–195. https://doi.org/10.1103/RevModPhys.74.145
- Lo, H. K., Curty, M., & Tamaki, K. (2014). Secure quantum key distribution. Nature Photonics, 8(8), 595–604. https://doi.org/10.1038/nphoton.2014.149
- Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dušek, M., Lütkenhaus, N., & Peev, M. (2009). The security of practical quantum key distribution. Reviews of Modern Physics, 81(3), 1301–1350. https://doi.org/10.1103/RevModPhys.81.1301
- Pirandola, S., Andersen, U. L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., ... & Wallden, P. (2020). Advances in quantum cryptography. Advances in Optics and Photonics, 12(4), 1012–1236. https://doi.org/10.1364/AOP.361502
- Xu, F., Ma, X., Zhang, Q., Lo, H. K., & Pan, J. W. (2020). Secure quantum key distribution with realistic devices. Reviews of Modern Physics, 92(2), 025002. https://doi.org/10.1103/RevModPhys.92.025002
- Yin, H. L., Chen, T. Y., Yu, Z. W., Liu, H., You, L. X., Zhou, Y. H., ... & Pan, J. W. (2016). Measurement-device-independent quantum key distribution over a 404 km optical fiber. Physical Review Letters, 117(19), 190501. https://doi.org/10.1103/PhysRevLett.117.190501
- Lucamarini, M., Yuan, Z. L., Dynes, J. F., & Shields, A. J. (2018). Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature, 557(7705), 400–403. https://doi.org/10.1038/s41586-018-0066-6
- Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., ... & Tomita, A. (2011). Field test of quantum key distribution in the Tokyo QKD network. Optics Express, 19(11), 10387–10409. https://doi.org/10.1364/OE.19.010387
- Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, J., Boxleitner, W., ... & Zeilinger, A. (2009). The SECOQC quantum key distribution network in Vienna. New Journal of Physics, 11(7), 075001. https://doi.org/10.1088/1367-2630/11/7/075001
- Lo, H. K., & Chau, H. F. (1999). Unconditional security of quantum key distribution over arbitrarily long distances. Science, 283(5410), 2050–2056. https://doi.org/10.1126/science.283.5410.2050
- Chen, J. P., Zhang, C., Li, Y. H., Liu, Y., Han, Z. F., & Guo, G. C. (2020). Twin-field quantum key distribution over 511 km fiber with phase post-selection. Physical Review Letters, 124(7), 070501. https://doi.org/10.1103/PhysRevLett.124.070501
- Wang, S., Chen, W., Yin, Z. Q., He, D. Y., Song, X. T., Li, H. W., ... & Han, Z. F. (2017). Practical gigahertz quantum key distribution robust against channel disturbance. Optics Letters, 42(3), 500–503. https://doi.org/10.1364/OL.42.000500
- Yuan, Z. L., Lucamarini, M., Roberts, G. L., Dynes, J. F., & Shields, A. J. (2018). High-speed dual-detector quantum key distribution. Applied Physics Letters, 113(4), 041104. https://doi.org/10.1063/1.5038032
- NSA. (2021). Quantum-resistant security. National Security Agency. Retrieved from https://www.nsa.gov/News-Features/Feature-Stories/Article-View/Article/2726383/quantum-resistant-security/
- ETSI. (2023). Quantum-safe cryptography standardization. European Telecommunications Standards Institute. Retrieved from https://www.etsi.org/technologies/quantum-safe-cryptography
- Korzh, B., Lim, C. C. W., Houlmann, R., Gisin, N., Li, M. J., Nolan, D., ... & Zbinden, H. (2015). Provably secure and practical quantum key distribution over 307 km of optical fibre. Nature Photonics, 9(3), 163–168. https://doi.org/10.1038/nphoton.2014.327
- Boaron, A., Boso, G., Rusca, D., Vulliez, C., Autebert, C., Caloz, M., ... & Zbinden, H. (2018). Secure quantum key distribution over 421 km of optical fiber. Physical Review Letters, 121(19), 190502. https://doi.org/10.1103/PhysRevLett.121.190502
- Wang, J., Chen, J., Yin, Z., Zhang, Y., Zhang, C., & Han, Z. (2021). Long-distance twin-field quantum key distribution over more than 600 km. Nature Photonics, 15, 531–536. https://doi.org/10.1038/s41566-021-00811-0
- Zhang, Q., Yu, Z. W., Chen, T. Y., Liu, Y., & Pan, J. W. (2023). Quantum communication and quantum network. National Science Review, 10(4), nwac257. https://doi.org/10.1093/nsr/nwac257
- Makarov, V., Anisimov, A., & Skaar, J. (2006). Effects of detector efficiency mismatch on security of quantum cryptosystems. Physical Review A, 74(2), 022313. https://doi.org/10.1103/PhysRevA.74.022313
- Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., & Makarov, V. (2010). Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photonics, 4, 686–689. https://doi.org/10.1038/nphoton.2010.214
- Zhao, Y., Fung, C. H. F., Qi, B., Chen, C., & Lo, H. K. (2008). Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A, 78(4), 042333. https://doi.org/10.1103/PhysRevA.78.042333
- Lim, C. C. W., Portmann, C., Tomamichel, M., Renner, R., & Gisin, N. (2014). Device-independent quantum key distribution with local Bell test. Physical Review X, 3(3), 031006. https://doi.org/10.1103/PhysRevX.3.031006
- Lucamarini, M., Yuan, Z. L., Dynes, J. F., & Shields, A. J. (2017). Practical security bounds against the Trojan-horse attack in quantum key distribution. Physical Review A, 97(3), 032333. https://doi.org/10.1103/PhysRevA.97.032333
- Ma, X., Fung, C. H. F., & Lo, H. K. (2007). Quantum key distribution with entangled photon sources. Physical Review A, 76(1), 012307. https://doi.org/10.1103/PhysRevA.76.012307
- Choi, Y., Kim, Y., Lee, K., Lee, S. W., Jeong, Y. C., & Kim, Y. H. (2016). Field test of polarization-encoded quantum key distribution using a Sagnac interferometer. Optics Express, 24(3), 2212–2220. https://doi.org/10.1364/OE.24.002212
- Cerf, N. J., Bourennane, M., Karlsson, A., & Gisin, N. (2002). Security of quantum key distribution using d-level systems. Physical Review Letters, 88(12), 127902. https://doi.org/10.1103/PhysRevLett.88.127902
- Diamanti, E., Lo, H. K., Qi, B., & Yuan, Z. (2016). Practical challenges in quantum key distribution. npj Quantum Information, 2(1), 1–12. https://doi.org/10.1038/npjqi.2016.1
- White, A., Chapman, J., & Milla, D. (2022). Quantum internet: Future backbone for distributed quantum computing. Nature Communications, 13(1), 7271. https://doi.org/10.1038/s41467-022-34986-1
- Pirandola, S., Laurenza, R., Ottaviani, C., & Banchi, L. (2017). Fundamental limits of repeaterless quantum communications. Nature Communications, 8, 15043. https://doi.org/10.1038/ncomms15043
- Tang, Y. L., Yin, H. L., Chen, S. J., Liu, Y., Zhang, W. J., Jiang, X., ... & Pan, J. W. (2014). Measurement-device-independent quantum key distribution over untrustful metropolitan network. Physical Review X, 6(1), 011024. https://doi.org/10.1103/PhysRevX.6.011024
- Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., ... & Miki, S. (2011). Field test of quantum key distribution in the Tokyo QKD network. Optics Express, 19(11), 10387–10409. https://doi.org/10.1364/OE.19.010387
- Yuan, Z. L., Shields, A. J., & Dynes, J. F. (2018). Quantum key distribution over 421 km of standard telecom fiber. Nature Photonics, 12, 400–405. https://doi.org/10.1038/s41566-018-0192-4
- Liao, S. K., Cai, W. Q., Liu, W. Y., Zhang, L., Li, Y., Ren, J. G., ... & Pan, J. W. (2017). Satellite-to-ground quantum key distribution. Nature, 549, 43–47. https://doi.org/10.1038/nature23655
- Bedington, R., Arrazola, J. M., & Ling, A. (2017). Progress in satellite quantum key distribution. npj Quantum Information, 3(1), 1–13. https://doi.org/10.1038/s41534-017-0031-5
- Renner, R. (2008). Security of quantum key distribution. International Journal of Quantum Information, 6(01), 1–127. https://doi.org/10.1142/S0219749908003256
- Takesue, H., Sasaki, T., Tamaki, K., & Koashi, M. (2015). Experimental quantum key distribution without monitoring signal disturbance. Nature Photonics, 9, 827–831. https://doi.org/10.1038/nphoton.2015.232
- Lucamarini, M., Roberts, G. L., Dynes, J. F., & Shields, A. J. (2018). Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature, 557, 400–403. https://doi.org/10.1038/s41586-018-0066-6
- Zou, X., Qian, L., & Tang, Y. (2020). Quantum key distribution networks in metropolitan areas: A review. IEEE Access, 8, 90225–90241. https://doi.org/10.1109/ACCESS.2020.2994524
- Diamanti, E., Lo, H. K., Qi, B., & Yuan, Z. (2016). Practical challenges in quantum key distribution. npj Quantum Information, 2, 16025. https://doi.org/10.1038/npjqi.2016.25
- Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, J., Boxleitner, W., ... & Zeilinger, A. (2009). The SECOQC quantum key distribution network in Vienna. New Journal of Physics, 11(7), 075001. https://doi.org/10.1088/1367-2630/11/7/075001
- Lucamarini, M., Yuan, Z. L., Dynes, J. F., & Shields, A. J. (2015). Efficient decoy-state quantum key distribution with quantified security. Optics Express, 23(7), 8372–8391. https://doi.org/10.1364/OE.23.008372
- Wang, S., Chen, W., Yin, Z. Q., Li, H. W., He, D. Y., Zhou, Z., ... & Han, Z. F. (2014). Field and long-term demonstration of a wide area quantum key distribution network. Optics Express, 22(18), 21739–21756. https://doi.org/10.1364/OE.22.021739
- Guan, J. Y., Liu, W. Y., Li, Y. H., Liao, S. K., Cai, W. Q., Yin, J., ... & Pan, J. W. (2021). Quantum key distribution on a network of ground stations and satellites. Nature Photonics, 15(8), 617–622. https://doi.org/10.1038/s41566-021-00835-1
- Elkouss, D., Leverrier, A., Alleaume, R., & Boutros, J. J. (2009). Efficient reconciliation protocol for discrete-variable quantum key distribution. IEEE Transactions on Information Theory, 55(10), 4678–4685. https://doi.org/10.1109/TIT.2009.2025545
- Zhang, Z., Ding, Y., & Zhao, Q. (2020). Machine learning-enhanced post-processing in quantum key distribution. Quantum Science and Technology, 5(4), 045013. https://doi.org/10.1088/2058-9565/aba315
- Korzh, B., Lim, C. C. W., Houlmann, R., Gisin, N., Li, M. J., Nolan, D., ... & Zbinden, H. (2015). Provably secure and practical quantum key distribution over 307 km of optical fibre. Nature Photonics, 9(3), 163–168. https://doi.org/10.1038/nphoton.2014.327
- Tamaki, K., Lo, H. K., Fung, C. H. F., & Qi, B. (2014). Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Physical Review A, 90(5), 052314. https://doi.org/10.1103/PhysRevA.90.052314
- Yin, H. L., Fu, Y., Tang, Y. L., Liu, Y., Chen, S. J., Xie, Y., ... & Pan, J. W. (2016). Measurement-device-independent quantum key distribution over a 404 km optical fiber. Physical Review Letters, 117(19), 190501. https://doi.org/10.1103/PhysRevLett.117.190501
- Takeoka, M., Guha, S., & Wilde, M. M. (2014). Fundamental rate-loss tradeoff for optical quantum key distribution. Nature Communications, 5, 5235. https://doi.org/10.1038/ncomms6235
- Cao, X. Y., Yu, Z. W., & Wang, X. B. (2015). Improving the key rate of measurement-device-independent quantum key distribution with heralded single-photon sources. Physical Review A, 92(2), 022336. https://doi.org/10.1103/PhysRevA.92.022336
- Boaron, A., Boso, G., Rusca, D., Vulliez, C., Autebert, C., Caloz, M., ... & Zbinden, H. (2018). Secure quantum key distribution over 421 km of optical fiber. Physical Review Letters, 121(19), 190502. https://doi.org/10.1103/PhysRevLett.121.190502
- Lucamarini, M., Yuan, Z. L., Dynes, J. F., & Shields, A. J. (2018). Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature, 557(7705), 400–403. https://doi.org/10.1038/s41586-018-0066-6
- Pirandola, S., Laurenza, R., Ottaviani, C., & Banchi, L. (2017). Fundamental limits of repeaterless quantum communications. Nature Communications, 8, 15043. https://doi.org/10.1038/ncomms15043
- Tamaki, K., Curty, M., Kato, G., Lo, H. K., & Azuma, K. (2018). Loss-tolerant quantum cryptography with imperfect sources. Physical Review A, 97(2), 022308. https://doi.org/10.1103/PhysRevA.97.022308
- Sidhu, J. S., Kok, P., Oi, D. K. L., & Brougham, T. (2021). Finite-size effects in practical quantum key distribution. Quantum Science and Technology, 6(4), 045012. https://doi.org/10.1088/2058-9565/ac1e7c
- Zhang, Y., Yu, Z. W., & Wang, X. B. (2017). Semidefinite programming for device-independent quantum key distribution. Physical Review A, 95(4), 042309. https://doi.org/10.1103/PhysRevA.95.042309
- Curty, M., Xu, F., Cui, C., Lim, C. C. W., Tamaki, K., & Lo, H. K. (2019). Simple security analysis of quantum key distribution. npj Quantum Information, 5, 15. https://doi.org/10.1038/s41534-019-0124-4
- Laudenbach, F., Pacher, C., Fung, C. H. F., Poppe, A., Peev, M., Schrenk, B., ... & Huber, M. (2018). Continuous-variable quantum key distribution with Gaussian modulation—the theory of practical implementations. Advanced Quantum Technologies, 1(1), 1800011. https://doi.org/10.1002/qute.201800011
- Upadhyay, P., & Kumar, A. (2022). Satellite-based quantum key distribution: A survey. Optical Fiber Technology, 69, 102898. https://doi.org/10.1016/j.yofte.2021.102898
- Lo, H. K., Curty, M., & Qi, B. (2012). Measurement-device-independent quantum key distribution. Physical Review Letters, 108(13), 130503. https://doi.org/10.1103/PhysRevLett.108.130503
- Yin, H. L., Chen, T. Y., Yu, Z. W., Liu, H., You, L. X., Zhou, Y. H., ... & Pan, J. W. (2016). Measurement-device-independent quantum key distribution over a 404 km optical fiber. Physical Review Letters, 117(19), 190501. https://doi.org/10.1103/PhysRevLett.117.190501
- Vedovato, F., Agnesi, C., Scriminich, F., Santamato, A., Calarco, T., & Vallone, G. (2022). Experimental measurement-device-independent quantum key distribution with imperfect detectors. Quantum Science and Technology, 7(4), 045004. https://doi.org/10.1088/2058-9565/ac81b5
- Jennewein, T., & Higgins, B. (2013). The quantum space race. Physics World, 26(3), 52–56. https://doi.org/10.1088/2058-7058/26/3/36
- Hughes, R. J., Nordholt, J. E., Derkacs, D., & Peterson, C. G. (2002). Practical free-space quantum key distribution over 10 km in daylight and at night. New Journal of Physics, 4, 43. https://doi.org/10.1088/1367-2630/4/1/343
- Lucio-Martinez, I., Chan, P., Mo, X., Hosier, S., & Tittel, W. (2009). Proof-of-concept of real-world quantum key distribution with quantum frames. New Journal of Physics, 11(9), 095001. https://doi.org/10.1088/1367-2630/11/9/095001
- Brassard, G., & Raymond-Robichaud, P. (2018). Can quantum mechanics be considered complete? The European Physical Journal D, 72, 229. https://doi.org/10.1140/epjd/e2018-90257-3
- Chen, Y. A., Zhang, Q., Chen, T. Y., Cai, W. Q., Liao, S. K., Zhang, J., ... & Pan, J. W. (2021). An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature, 589(7841), 214–219. https://doi.org/10.1038/s41586-020-03093-8
- Liao, S. K., Cai, W. Q., Liu, W. Y., Zhang, L., Li, Y., Ren, J. G., ... & Pan, J. W. (2017). Satellite-to-ground quantum key distribution. Nature, 549(7670), 43–47. https://doi.org/10.1038/nature23655
- Lucamarini, M., Yuan, Z. L., Dynes, J. F., & Shields, A. J. (2018). Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature, 557(7705), 400–403. https://doi.org/10.1038/s41586-018-0066-6
- Qi, B., Lougovski, P., Pooser, R., Grice, W., & Bobrek, M. (2015). Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection. Physical Review X, 5(4), 041009. https://doi.org/10.1103/PhysRevX.5.041009
- Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., & Diamanti, E. (2013). Experimental demonstration of long-distance continuous-variable quantum key distribution. Nature Photonics, 7(5), 378–381. https://doi.org/10.1038/nphoton.2013.63
- Usenko, V. C., & Filip, R. (2016). Trusted noise in continuous-variable quantum key distribution: A threat and a defense. Entropy, 18(1), 20. https://doi.org/10.3390/e18010020
- Pirandola, S., Laurenza, R., Ottaviani, C., & Banchi, L. (2017). Fundamental limits of repeaterless quantum communications. Nature Communications, 8, 15043. https://doi.org/10.1038/ncomms15043
- Bedington, R., Arrazola, J. M., & Ling, A. (2017). Progress in satellite quantum key distribution. npj Quantum Information, 3, 30. https://doi.org/10.1038/s41534-017-0031-5
- Bacco, D., Da Lio, B., Sanzaro, M., & Oxenløwe, L. K. (2019). Boosting the secret key rate in a shared quantum and classical fibre communication system. Communications Physics, 2, 140. https://doi.org/10.1038/s42005-019-0246-6
- Zhuang, Q., Zhang, Z., Preskill, J., & Shapiro, J. H. (2020). Physical-layer authentication over quantum channels using classical keys. Nature Communications, 11, 2908. https://doi.org/10.1038/s41467-020-16688-7
- Xu, F., Curty, M., Qi, B., & Lo, H. K. (2020). Practical aspects of measurement-device-independent quantum key distribution. npj Quantum Information, 6, 82. https://doi.org/10.1038/s41534-020-00320-7
- Li, Y. H., Liao, S. K., Tang, Y. L., Zhang, Q., & Pan, J. W. (2021). Quantum network for future information infrastructure. National Science Review, 8(10), nwab113. https://doi.org/10.1093/nsr/nwab113
- Diamanti, E., & Lo, H. K. (2016). Quantum cryptography with continuous variables: A review. Reports on Progress in Physics, 80(1), 016001. https://doi.org/10.1088/1361-6633/80/1/016001
- Ma, X., Qi, B., Zhao, Y., & Lo, H. K. (2005). Practical decoy state for quantum key distribution. Physical Review A, 72(1), 012326. https://doi.org/10.1103/PhysRevA.72.012326
- Cai, Y., Zhou, Y., Yin, Z. Q., & Chen, Z. B. (2021). Entanglement-based quantum communication with atomic ensembles. Nature Reviews Physics, 3, 570–588. https://doi.org/10.1038/s42254-021-00324-4
- Andersen, U. L., Neergaard-Nielsen, J. S., van Loock, P., & Furusawa, A. (2015). Hybrid discrete- and continuous-variable quantum information. Nature Physics, 11(9), 713–719. https://doi.org/10.1038/nphys3410
- Gisin, N., Fasel, S., Kraus, B., Zbinden, H., & Ribordy, G. (2006). Trojan-horse attacks on quantum-key-distribution systems. Physical Review A, 73(2), 022320. https://doi.org/10.1103/PhysRevA.73.022320
- Tang, Z., Liao, Z., Yin, H., et al. (2016). Source attack immunity in quantum key distribution with untrusted sources. Physical Review A, 94(3), 032317. https://doi.org/10.1103/PhysRevA.94.032317
- Curty, M., Ma, X., & Qi, B. (2010). Passive decoy-state quantum key distribution with practical light sources. Physical Review A, 81(2), 022310. https://doi.org/10.1103/PhysRevA.81.022310
- Li, Y., Zeng, P., Liu, Y., et al. (2023). Metropolitan quantum cryptography network with quantum-classical multiplexing. Light: Science & Applications, 12(1), 1–8. https://doi.org/10.1038/s41377-022-01030-5
- Lucamarini, M., Fröhlich, B., Dynes, J. F., & Shields, A. J. (2015). Secure quantum key distribution with imperfect devices. Nature Photonics, 9(6), 362–367. https://doi.org/10.1038/nphoton.2015.76
- Pirandola, S. (2019). End-to-end capacities of a quantum communication network. Communications Physics, 2, 51. https://doi.org/10.1038/s42005-019-0147-8
- Nam, S. W., Korzh, B., et al. (2022). Ultra-low-noise superconducting nanowire single-photon detectors for quantum communication. Nature Communications, 13(1), 1–9. https://doi.org/10.1038/s41467-022-30537-z
- Bunandar, D., Lentine, A. L., Lee, C., et al. (2018). Metropolitan quantum key distribution with silicon photonics. Physical Review X, 8(2), 021009. https://doi.org/10.1103/PhysRevX.8.021009
- Yuan, Z. L., Dynes, J. F., & Shields, A. J. (2010). Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography. Applied Physics Letters, 98(23), 231104. https://doi.org/10.1063/1.3442394
- Shibata, H., Honjo, T., & Tamaki, K. (2014). Efficient detection of quantum key distribution using superconducting nanowire single-photon detectors. Optics Letters, 39(17), 5078–5081. https://doi.org/10.1364/OL.39.005078
- Kumar, R., Qin, H., & Alléaume, R. (2015). Coexistence of continuous variable QKD with intense DWDM classical channels. New Journal of Physics, 17(4), 043027. https://doi.org/10.1088/1367-2630/17/4/043027
- Wehner, S., Elkouss, D., & Hanson, R. (2018). Quantum internet: A vision for the road ahead. Science, 362(6412), eaam9288. https://doi.org/10.1126/science.aam9288
- Li, W., Zhu, F., Guan, J. Y., et al. (2020). Experimental quantum key distribution network with software-defined networking. npj Quantum Information, 6, 1–6. https://doi.org/10.1038/s41534-020-0253-2
- Papernov, A., Zeilinger, A., et al. (2022). Entanglement-based quantum key distribution over 400 km fiber. Physical Review Letters, 128(18), 180502. https://doi.org/10.1103/PhysRevLett.128.180502
- Bai, X., Ma, H. Q., Jiang, C., et al. (2023). High-rate field test of satellite-to-ground QKD. Nature, 617(7960), 74–79. https://doi.org/10.1038/s41586-023-05997-y
- Wang, S., Chen, W., Yin, Z. Q., et al. (2023). Toward satellite-based global QKD: Experimental progress and challenges. npj Quantum Information, 9, 12. https://doi.org/10.1038/s41534-023-00723-9
Downloads
Similar Articles
- Saher Hassan, Mohamed Abdallatif, Mahmoud Atia, The Role of Cryptography in Securing Blockchain Networks , International Journal of Information & Digital Security: Vol. 3 No. 1 (2025): International Journal of Information & Digital Security
- Firas Habbal, Impact of Information Security on National Digital Investment , International Journal of Information & Digital Security: Vol. 1 No. 1 (2023): International Journal of Information & Digital Security
- Nabih Abdelmajid, The Necessity of Cybersecurity for Community Safety The Proposal of the Safe Family Program for Educating the Gulf Arab Community on Information Security for Both Students and Parents , International Journal of Information & Digital Security: Vol. 1 No. 1 (2023): International Journal of Information & Digital Security
- Nasser Jarallah Al-Ghamdi, Dr. Mousa Al-Akhras, Dr. Fuad Alhosban, Forensic Analysis of Health and Fitness Applications on Android , International Journal of Information & Digital Security: Vol. 2 No. 1 (2024): International Journal of Information & Digital Security
- Driss Abbadi, Morocco's cybersecurity strategy between challenges and aspirations , International Journal of Information & Digital Security: Vol. 2 No. 1 (2024): International Journal of Information & Digital Security
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Hicham Ismaili , تنظيم المنصات الرقمية: دراسة مقارنة , International Journal of Information & Digital Security: Vol. 2 No. 1 (2024): International Journal of Information & Digital Security
- Driss Abbadi, Morocco's cybersecurity strategy between challenges and aspirations , International Journal of Information & Digital Security: Vol. 2 No. 1 (2024): International Journal of Information & Digital Security
- Nabih Abdelmajid, The Necessity of Cybersecurity for Community Safety The Proposal of the Safe Family Program for Educating the Gulf Arab Community on Information Security for Both Students and Parents , International Journal of Information & Digital Security: Vol. 1 No. 1 (2023): International Journal of Information & Digital Security
- Fayrouz Attia, أمن العمالة التونسية في ظل مخاطر التكنولوجيا الحديثة , International Journal of Information & Digital Security: Vol. 2 No. 1 (2024): International Journal of Information & Digital Security
- Nasser Jarallah Al-Ghamdi, Dr. Mousa Al-Akhras, Dr. Fuad Alhosban, Forensic Analysis of Health and Fitness Applications on Android , International Journal of Information & Digital Security: Vol. 2 No. 1 (2024): International Journal of Information & Digital Security
- Saad M. Almalki, Nabih T. Abdelmajeed, A NEW INTELLIGENT MODEL FOR PHISHING WEB SITES DETECTION , International Journal of Information & Digital Security: Vol. 1 No. 1 (2023): International Journal of Information & Digital Security
- Firas Habbal, Impact of Information Security on National Digital Investment , International Journal of Information & Digital Security: Vol. 1 No. 1 (2023): International Journal of Information & Digital Security