Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 1 No. 2 (2024): International Journal for Autism Challenges & Solution

Developing an AI-Driven Mobile Application for Early Autism Diagnosis and Classification

  • Manara Al Hamieli
  • Dr. Fawaz Habbal
Submitted
January 17, 2025
Published
2024-12-30

Abstract

This dissertation looks at the important issue of delaying diagnosis and treatment in autism spectrum disorder (ASD) by creating a mobile app that uses AI to help with early diagnosis and classification of the disorder. It collects and reviews large datasets that include behavioral evaluations, developmental milestones, and known diagnostic standards, training an AI model able to make correct predictions about ASD. The main results show that the app not only speeds up diagnosis but also improves classification accuracy compared to standard diagnostic methods. These findings highlight the importance of using advanced technology in healthcare, especially for ASD, where early intervention is key to positive developmental results. Additionally, this study points out how AI tools can help fill gaps in healthcare delivery, especially in areas with fewer resources and access to specialized care. The implications go beyond just autism diagnosis, indicating a significant potential for AI use in different healthcare fields, aiming to enhance diagnostic processes and customize treatment plans, thus ultimately boosting patient outcomes and supporting public health efforts.

References

  1. Chiugo Okoye, Chidi M Obialo-Ibeawuchi, Omobolanle A Obajeun, Sarosh Sarwar, Christine Tawfik, Madeeha Subhan Waleed, Asad Ullah Wasim, et al. (2023) Early Diagnosis of Autism Spectrum Disorder: A Review and Analysis of the Risks and Benefits. Cureus. doi: https://doi.org/10.7759/cureus.43226
  2. Nitzan Gabbay-Dizdar, Michal Ilan, Gal Meiri, Michal Faroy, Analya Michaelovski, Hagit Flusser, Idan Menashe, et al. (2021) Early diagnosis of autism in the community is associated with marked improvement in social symptoms within 1–2 years. Volume(26), 1353-1363. Autism. doi: https://doi.org/10.1177/13623613211049011
  3. Andrew J. O. Whitehouse, Kandice J. Varcin, Sarah Pillar, Wesley Billingham, Gail A. Alvares, Josephine Barbaro, Catherine A. Bent, et al. (2021) Effect of Preemptive Intervention on Developmental Outcomes Among Infants Showing Early Signs of Autism. Volume(175), e213298-e213298. JAMA Pediatrics. doi: https://doi.org/10.1001/jamapediatrics.2021.3298
  4. Mariko Hosozawa, Amanda Sacker, Noriko Cable (2020) Timing of diagnosis, depression and self-harm in adolescents with autism spectrum disorder. Volume(25), 70-78. Autism. doi: https://doi.org/10.1177/1362361320945540
  5. Maria Niarchou, Samuel J. R. A. Chawner, Joanne Doherty, Anne Maillard, Sébastien Jacquemont, Wendy K. Chung, LeeAnne Green‐Snyder, et al. (2019) Psychiatric disorders in children with 16p11.2 deletion and duplication. Volume(9). Translational Psychiatry. doi: https://doi.org/10.1038/s41398-018-0339-8
  6. Bingrui Zhou, Qiong Xu, Huiping Li, Ying Zhang, Yi Wang, Sally J. Rogers, Xiu Xu (2018) Effects of Parent‐Implemented Early Start Denver Model Intervention on Chinese Toddlers with Autism Spectrum Disorder: A Non‐Randomized Controlled Trial. Volume(11), 654-666. Autism Research. doi: https://doi.org/10.1002/aur.1917
  7. Raffaella Devescovi, Lorenzo Monasta, Alice Mancini, Maura Bin, Valerio Vellante, Marco Carrozzi, Costanza Colombi (2016) Early diagnosis and Early Start Denver Model intervention in autism spectrum disorders delivered in an Italian Public Health System service. Neuropsychiatric Disease and Treatment. doi: https://doi.org/10.2147/ndt.s106850
  8. Jack A. Kosmicki, Vanessa Sochat, Marlena Duda, Dennis P. Wall (2015) Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning. Volume(5), e514-e514. Translational Psychiatry. doi: https://doi.org/10.1038/tp.2015.7
  9. Kristen Bottema‐Beutel, Steven K. Kapp, Jessica Nina Lester, Noah J. Sasson, Brittany N. Hand (2020) Avoiding Ableist Language: Suggestions for Autism Researchers. Volume(3), 18-29. Autism in Adulthood. doi: https://doi.org/10.1089/aut.2020.0014
  10. Laura Hull, K. V. Petrides, Carrie Allison, Paula Smith, Simon Baron‐Cohen, Meng‐Chuan Lai, William Mandy (2017) “Putting on My Best Normal”: Social Camouflaging in Adults with Autism Spectrum Conditions. Volume(47), 2519-2534. Journal of Autism and Developmental Disorders. doi: https://doi.org/10.1007/s10803-017-3166-5
  11. Sarah Bargiela, Robyn Steward, William Mandy (2016) The Experiences of Late-diagnosed Women with Autism Spectrum Conditions: An Investigation of the Female Autism Phenotype. Volume(46), 3281-3294. Journal of Autism and Developmental Disorders. doi: https://doi.org/10.1007/s10803-016-2872-8
  12. Daniel R. Weinberger, Terry E. Goldberg (2014) RDoCs redux. Volume(13), 36-38. World Psychiatry. doi: https://doi.org/10.1002/wps.20096
  13. Bruce N. Cuthbert (2014) The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. Volume(13), 28-35. World Psychiatry. doi: https://doi.org/10.1002/wps.20087
  14. Josef Parnas (2012) The core Gestalt of schizophrenia. Volume(11), 67-69. World Psychiatry. doi: https://doi.org/10.1016/j.wpsyc.2012.05.002
  15. Luis Salvador‐Carulla, Geoffrey M. Reed, Leila Vaezazizi, Sally‐Ann Cooper, Rafael Martínez‐Leal, Marco O. Bertelli, Colleen M. Adnams, et al. (2011) Intellectual developmental disorders: towards a new name, definition and framework for “mental retardation/intellectual disability” in ICD‐11. Volume(10), 175-180. World Psychiatry. doi: https://doi.org/10.1002/j.2051-5545.2011.tb00045.x
  16. David T. Miller, Margaret P Adam, Swaroop Aradhya, Leslie G. Biesecker, Arthur R. Brothman, Nigel P. Carter, Deanna M. Church, et al. (2010) Consensus Statement: Chromosomal Microarray Is a First-Tier Clinical Diagnostic Test for Individuals with Developmental Disabilities or Congenital Anomalies. Volume(86), 749-764. The American Journal of Human Genetics. doi: https://doi.org/10.1016/j.ajhg.2010.04.006
  17. Shuroug A. Alowais, Sahar S. Alghamdi, Nada Alsuhebany, Tariq Alqahtani, Abdulrahman Alshaya, Sumaya N. Almohareb, Atheer Aldairem, et al. (2023) Revolutionizing healthcare: the role of artificial intelligence in clinical practice. Volume(23). BMC Medical Education. doi: https://doi.org/10.1186/s12909-023-04698-z
  18. Elizabeth Morrow, Teodor Zidaru, Fiona Ross, Cindy Mason, Kunal Patel, Melissa Ream, Rich Stockley (2023) Artificial intelligence technologies and compassion in healthcare: A systematic scoping review. Volume(13). Frontiers in Psychology. doi: https://doi.org/10.3389/fpsyg.2022.971044
  19. Rajeswari Chengoden, Nancy Victor, Thien Huynh‐The, Gokul Yenduri, Rutvij H. Jhaveri, Mamoun Alazab, Sweta Bhattacharya, et al. (2023) Metaverse for Healthcare: A Survey on Potential Applications, Challenges and Future Directions. Volume(11), 12765-12795. IEEE Access. doi: https://doi.org/10.1109/access.2023.3241628
  20. Angela Zhang, Lei Xing, James Zou, Joseph C. Wu (2022) Shifting machine learning for healthcare from development to deployment and from models to data. Volume(6), 1330-1345. Nature Biomedical Engineering. doi: https://doi.org/10.1038/s41551-022-00898-y
  21. Vladimir V. Popov, Е. V. Kudryavtseva, Nirmal Kumar Katiyar, Andrei Shishkin, S. I. Stepanov, Saurav Goel (2022) Industry 4.0 and Digitalisation in Healthcare. Volume(15), 2140-2140. Materials. doi: https://doi.org/10.3390/ma15062140
  22. Deepti Saraswat, Pronaya Bhattacharya, Ashwin Verma, Vivek Kumar Prasad, Sudeep Tanwar, Gulshan Sharma, Pitshou N. Bokoro, et al. (2022) Explainable AI for Healthcare 5.0: Opportunities and Challenges. Volume(10), 84486-84517. IEEE Access. doi: https://doi.org/10.1109/access.2022.3197671
  23. Visar Berisha, Chelsea Krantsevich, P. Richard Hahn, Shira Hahn, Gautam Dasarathy, Pavan Turaga, Julie Liss (2021) Digital medicine and the curse of dimensionality. Volume(4). npj Digital Medicine. doi: https://doi.org/10.1038/s41746-021-00521-5
  24. Marco Solmi, Joaquim Raduà, Miriam Olivola, E. Croce, Livia Soardo, Gonzalo Salazar de Pablo, Jae Il Shin, et al. (2021) Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Volume(27), 281-295. Molecular Psychiatry. doi: https://doi.org/10.1038/s41380-021-01161-7
  25. Sarabeth Broder‐Fingert, Camilla Mateo, Katherine Zuckerman (2020) Structural Racism and Autism. Volume(146). PEDIATRICS. doi: https://doi.org/10.1542/peds.2020-015420
  26. AlkaA Subramanyam, Abir Mukherjee, Malay Dave, Kersi Chavda (2019) Clinical practice guidelines for autism spectrum disorders. Volume(61), 254-254. Indian Journal of Psychiatry. doi: https://doi.org/10.4103/psychiatry.indianjpsychiatry_542_18
  27. Jon Baio, Lisa D. Wiggins, Deborah Christensen, Matthew J. Maenner, Julie L. Daniels, Zachary Warren, Margaret Kurzius‐Spencer, et al. (2018) Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years — Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. Volume(67), 1-23. MMWR Surveillance Summaries. doi: https://doi.org/10.15585/mmwr.ss6706a1
  28. Daniel W. Hoover, Joan Kaufman (2017) Adverse childhood experiences in children with autism spectrum disorder. Volume(31), 128-132. Current Opinion in Psychiatry. doi: https://doi.org/10.1097/yco.0000000000000390
  29. Ingrid E. Scheffer, Samuel F. Berkovic, Giuseppe Capovilla, Mary Connolly, Jacqueline A. French, Laura Maria de Figueiredo Ferreira Guilhoto, Édouard Hirsch, et al. (2017) ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Volume(58), 512-521. Epilepsia. doi: https://doi.org/10.1111/epi.13709
  30. Lonnie Zwaigenbaum, Margaret L. Bauman, Roula Choueiri, Deborah Fein, Connie Kasari, Karen Pierce, Wendy L. Stone, et al. (2015) Early Identification and Interventions for Autism Spectrum Disorder: Executive Summary. Volume(136), S1-S9. PEDIATRICS. doi: https://doi.org/10.1542/peds.2014-3667b
  31. Child engaged in play captured through digital technology. [Image]. (2025). Retrieved from https://images.zapnito.com/users/468264/posters/1650443871-78-2390/2a1b4a41-2f99-4bf3-abbc-70fb8f89bde6_large.png
  32. Technological Applications in Healthcare: An Overview [Image]. (2025). Retrieved from https://www.etherealproject.eu/wp-content/uploads/2023/06/6.png

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>