A Potential Link between Gut Leakiness and Sex Differences in Autism Spectrum Disorder (ASD)
Abstract
Background: Autism is categorized as autism spectrum disorder (ASD), characterized by recurrent behaviors and difficulties with social communication that can affect different body systems and are linked to gut microbiota dysbiosis (GM). The importance of altered GM in autistic people, the ways in which these changes could result in leaky gut, and the possible connection between sex differences and this problem are all highlighted in this paper. Main body: Research indicates that increased intestinal barrier permeability may play a significant role in the pathological changes seen in autism; it makes it easier for gut-derived endotoxins to enter the brain, where they activate the TLR4–MyD88–NF-κB signaling cascade and create an inflammatory environment. There have been differences found in the amounts of various bacterial metabolites, such as beta cresol, short-chain fatty acids, lipopolysaccharides, and bacterial toxins, in the blood and urine of children with autism. Additionally, the importance of particular proteins like zonulin, lysozyme, and calprotectin as biomarkers that can detect the leaky gut in ASD at an early stage has been shown. Bacterial metabolite leakage in these patients may be explained by disruption of the gut blood–brain barrier. As a result, a number of microbiota manipulation techniques have been developed to balance out sex differences. Male ASD sufferers are four times as likely as female ASD sufferers. Additionally, in both human and animal models of this illness, such as the maternal immune activation (MIA) mice model, the composition of GM is dependent on sex. However, very few studies have taken sex's biological impact into account when assessing how GM affects symptoms of ASD. MIA increases pro-inflammatory cytokines and chemokines in the mother, such as interleukin, IL-6, and IL-17α, which interfere with the development of the fetal brain. According to recent studies, MIA causes GM dysbiosis. This is significant because the GM, which lives in the gastrointestinal (GI) tract, contributes to the development of the immunological, neurological, and metabolic systems through the microbiota-gut-brain axis, resulting in characteristics that resemble ASD in the MIA model.Research exploring the impact of GM on ASD etiology primarily focuses on men, ignoring the recipient's and donor's sex/gender, even though biological distinctions linked to sex, GM, and leaky gut have been discovered to be correlated with each other. In the MIA model, sex-mediated gut-immune interactions were found in the few research that take into account the biological impact of sex.The limited studies that consider the biological effect of sex revealed sex-mediated gut-immune interactions in the MIA model. Conclusion: Given that many people with autism have gastrointestinal problems, this review emphasizes the possible link between ASD and GM. The involvement of altered GM in autistic people, how these changes result in leaky gut, and the possible connection between leaky gut and sex differences are all covered. Furthermore, this study offers a number of promising therapeutic therapies, including as intestinal proteins, some probiotics, and chemicals derived from bacteria, as novel approaches to reestablish a healthy GM.
References
- Lord, C., Elsabbagh, M., Baird, G., and Veenstra-Vanderweele, J. (2018). Autism spectrum disorder. Lancet (London, England), 392(10146), 508–520. https://doi.org/10.1016/S0140-6736 (18)31129-2. DOI: https://doi.org/10.1016/S0140-6736(18)31129-2
- Zeidan, J., Fombonne, E., Scorah, J., Ibrahim, A., Durkin, M. S., Saxena, S., Yusuf, A., Shih, A., & Elsabbagh, M. (2022). Global prevalence of autism: A systematic review update. Autism research: Official Journal of the International Society for Autism Research, 15(5), 778–790. https://doi.org/10.1002/aur.2696 DOI: https://doi.org/10.1002/aur.2696
- Rogge, N., & Janssen, J. (2019). The economic costs of autism spectrum disorder: A literature review. Journal of Autism and Developmental Disorders, 49(7), 2873–2900. https://doi.org/10.1007/s10803-019-04014-z DOI: https://doi.org/10.1007/s10803-019-04014-z
- Drapeau, E., Riad, M., Kajiwara, Y., & Buxbaum, J. D. (2018). Behavioral phenotyping of an improved mouse model of phelan-mcdermid syndrome with a complete deletion of the Shank3 gene. eNeuro, 5(3), ENEURO.0046-18.2018. https://doi.org/10.1523/ENEURO.0046-18.2018 DOI: https://doi.org/10.1523/ENEURO.0046-18.2018
- Loomes, R., Hull, L., & Mandy, W. P. L. (2017). What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. Journal of the American Academy of Child and Adolescent Psychiatry, 56(6), 466–474. https://doi.org/10.1016/j.jaac.2017.03.013 DOI: https://doi.org/10.1016/j.jaac.2017.03.013
- Werling, D. M., & Geschwind, D. H. (2013). Sex differences in autism spectrum disorders. Current Opinion in Neurology,26(2), 146–153. https://doi.org/10.1097/WCO.0b013e32835ee548 DOI: https://doi.org/10.1097/WCO.0b013e32835ee548
- Werling D. M. (2016). The role of sex-differential biology in risk for autism spectrum disorder. Biology of Sex Differences, 7, 58. https://doi.org/10.1186/s13293-016-0112-8 DOI: https://doi.org/10.1186/s13293-016-0112-8
- Abujame, T.S. , Al-Otaibi, N.M., Abuaish, S. , AlHarbi, R.H. , Assas, M.B., Alzahrani, S.A., Alotaibi, S.M., El-Ansary, A. and Aabed, K. (2022).Different Alterations in GM between Bifidobacterium longum and fecal microbiota transplantation treatments in propionic acid rat model of autism. nutrients, 14, 608. https://doi.org/10.3390/nu14030608 DOI: https://doi.org/10.3390/nu14030608
- Kang, D. W. et al. (2017).Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome 5, 10. https://doi.org/10.1186/s40168-016-0225-7 DOI: https://doi.org/10.1186/s40168-016-0225-7
- Kang, D. W. et al. (2019).Long-term benefit of microbiota transfer therapy on autism symptoms and GM. Sci. Rep. 9, 5821. https://doi.org/10.1038/s41598-019-42183-0 DOI: https://doi.org/10.1038/s41598-019-42183-0
- Wong, O. W. H. et al. (2022).Disentangling the relationship of GM, functional gastrointestinal disorders and autism: A case-control study on prepubertal Chinese boys. Sci. Rep. 12, 10659. https://doi.org/10.1038/s41598-022-14785-8 DOI: https://doi.org/10.1038/s41598-022-14785-8
- Mehra, A. et al. (2022).GM and autism spectrum disorder: From pathogenesis to potential therapeutic perspectives. J. Tradit. Complement. Med. 13(2), 135–149. DOI: https://doi.org/10.1016/j.jtcme.2022.03.001
- Patel, S., Dale, R. C., Rose, D., Heath, B., Nordahl, C. W., Rogers, S., Guastella, A. J., & Ashwood, P. (2020). Maternal immune conditions are increased in males with autism spectrum disorders and are associated with behavioural and emotional but not cognitive comorbidity. Translational Psychiatry, 10(1), 286. https://doi.org/10.1038/s41398-020-00976-14. DOI: https://doi.org/10.1038/s41398-020-00976-2
- Smith, S. E., Li, J., Garbett, K., Mirnics, K., & Patterson, P. H. (2007). Maternal immune activation alters fetal brain development through interleukin-6. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(40), 10695– 10702. https://doi.org/10.1523/JNEUROSCI.2178-07.2007 DOI: https://doi.org/10.1523/JNEUROSCI.2178-07.2007
- Haida, O., Al Sagheer, T., Balbous, A., Francheteau, M., Matas, E., Soria, F., Fernagut, P. O., & Jaber, M. (2019). Sex-dependent behavioral deficits and neuropathology in a maternal immune activation model of autism. Translational Psychiatry,9(1), 1–12. https://doi.org/10.1038/s41398-019-0457-y DOI: https://doi.org/10.1038/s41398-019-0457-y
- Hsiao, E. Y., McBride, S. W., Hsien, S., Sharon, G., Hyde, E. R., McCue, T., Codelli, J. A., Chow, J., Reisman, S. E., Petrosino, J. F., Patterson, P. H., & Mazmanian, S. K. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell,155(7), 1451–1463. DOI: https://doi.org/10.1016/j.cell.2013.11.024
- Juckel, G., Manitz, M. P., Freund, N., & Gatermann, S. (2021). Impact of Poly I:C induced maternal immune activation on offspring’s gut microbiome diversity - Implications for schizophrenia. Progress in Neuro-psychopharmacology & Biological Psychiatry, 110, 110306. https://doi.org/10.1016/j.pnpbp.2021.110306. DOI: https://doi.org/10.1016/j.pnpbp.2021.110306
- Carabotti, M., Scirocco, A., Maselli, M. A., & Severi, C. (2015). The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Annals of Gastroenterology, 28(2), 203–209.
- Sandoval-Motta, S., Aldana, M., Martínez-Romero, E., & Frank, A. (2017). The human microbiome and the missing heritability problem. Frontiers in Genetics, 8, 80. https://doi.org/10.3389/fgene.2017.00080 DOI: https://doi.org/10.3389/fgene.2017.00080
- Sharon, G., Cruz, N. J., Kang, D. W., Gandal, M. J., Wang, B., Kim, Y. M., & Mazmanian, S. K. (2019). Human GM from autism spectrum disorder promote behavioral symptoms in mice. Cell, 177(6), 1600-1618.e17. https://doi.org/10.1016/j.cell.2019.05.004 DOI: https://doi.org/10.1016/j.cell.2019.05.004
- Xiao, L., Yan, J., Yang, T., Zhu, J., Li, T., Wei, H., & Chen, J. (2021). Fecal microbiome transplantation from children with autism spectrum disorder modulates tryptophan and serotonergic synapse metabolism and induces altered behaviors in germ-free mice. Msystems,6(2), e01343-20. https://doi.org/10.1128/mSystems.01343-20 DOI: https://doi.org/10.1128/msystems.01343-20
- Kim, Y. S., Unno, T., Kim, B. Y., & Park, M. S. (2020). Sex differences in GM. The World Journal of Men’s Health, 38(1), 48–60. https://doi.org/10.5534/wjmh.190009 DOI: https://doi.org/10.5534/wjmh.190009
- Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T. G., & Cryan, J. F. (2014). Microbiota is essential for social development in the mouse. Molecular psychiatry, 19(2), 146–148. https://doi.org/10.1038/mp.2013.65 DOI: https://doi.org/10.1038/mp.2013.65
- Salia, S., Martin, Y., Burke, F. F., Myles, L. A., Jackman, L., Halievski, K., Bambico, F. R., & Swift-Gallant, A. (2023). Antibiotic-induced socio-sexual behavioral deficits are reversed via cecal microbiota transplantation but not androgen treatment. Brain, Behavior, & Immunity - Health, 30, 100637. https://doi.org/10.1016/j.bbih.2023.100637 DOI: https://doi.org/10.1016/j.bbih.2023.100637
- Thion, M. S., Low, D., Silvin, A., Chen, J., Grisel, P., Schulte-Schrepping, J., Blecher, R., Ulas, T., Squarzoni, P., Hoeffel, G., Coulpier, F., Siopi, E., David, F. S., Scholz, C., Shihui, F., Lum, J., Amoyo, A. A., Larbi, A., Poidinger, M., Buttgereit, A., … Garel, S. (2018). Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell, 172(3), 500–516.e16. https://doi.org/10.1016/j.cell.2017.11.042 DOI: https://doi.org/10.1016/j.cell.2017.11.042
- O'Grady, K. and Grabrucker, A.M.(2025).Metal Dyshomeostasis as a Driver of Gut Pathology in Autism Spectrum Disorders.Journal of Neurochemistry,169:e70041 1 of 20 https://doi.org/10.1111/jnc.70041 DOI: https://doi.org/10.1111/jnc.70041
- American Psychiatric Association. (2022). “Diagnostic and Statistical Manual of Mental Disorders.” In Text Rev. (DSM-5-TR), 5th ed. Arlington: American Psychiatric Association. DOI: https://doi.org/10.1176/appi.books.9780890425787
- Hull, L., Petrides,K. V. and Mandy,W.(2020). “The Female Autism Phenotype and Camouflaging: A Narrative Review.” Review Journal of Autism and Developmental Disorders, 7 (4), 306–17. DOI: https://doi.org/10.1007/s40489-020-00197-9
- Mao H, Cheng L, Zhang Y and Zhang F.(2024). A review article Gender Differences in Autism Spectrum Disorder: A systematic review of diagnosis, intervention, and outcomes. Gend. Sustain. Glob. South. 2024; 1(1), 92–136. DOI: https://doi.org/10.1515/gsgs-2024-0007
- Hodges, H., Fealko, C., Soares, N.(2020). Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation. Transl Pediatr. 9(Suppl 1),S55-S65 | http://dx.doi.org/10.21037/tp.2019.09.09. DOI: https://doi.org/10.21037/tp.2019.09.09
- Shen, M.D., Kim, S.H., McKinstry, R.C., et al. (2017).Increased extra-axial cerebrospinal fluid in high-risk infants who later develop autism. Biol Psychiatry, 82,186-93. DOI: https://doi.org/10.1016/j.biopsych.2017.02.1095
- Kim, H., Keifer, C., Rodriguez-Seijas, C., et al. (2019).Quantifying the optimal structure of the autism phenotype: a comprehensive comparison of dimensional, categorical, and hybrid models. J Am Acad Child Adolesc Psychiatry, 58,876-86.e2. DOI: https://doi.org/10.1016/j.jaac.2018.09.431
- Sabatini, G, Boccadoro, I., Prete, R., Battista, N. and Corsetti, A. (2025).Autism Spectrum Disorder: From Experimental Models to Probiotic Application with a Special Focus on Lactiplantibacillus planetarium. Nutrients, 17, 2470 https://doi.org/10.3390/nu17152470 DOI: https://doi.org/10.3390/nu17152470
- Wu, T., Wang, H., Lu, W., Zhai, Q., Zhang, Q., Yuan, W., Gu, Z., Zhao, J., Zhang, H., & Chen, W. (2020). Potential of gut microbiome for detection of autism spectrum disorder.Microbial Pathogenesis, 149, 104568. DOI: https://doi.org/10.1016/j.micpath.2020.104568
- Golubeva, A. V., Joyce, S. A., Moloney, G., Burokas, A., Sherwin, E., Arboleya, S., Flynn, I., Khochanskiy, D., Moya-Pérez, A., Peterson, V., Rea, K., Murphy, K., Makarova, O., Buravkov, S., Hyland, N. P., Stanton, C., Clarke, G., Gahan, C. G. M., Dinan, T. G., & Cryan, J. F. (2017). Microbiota-related changes in bile acid & tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine, 24, 166–178. DOI: https://doi.org/10.1016/j.ebiom.2017.09.020
- Israelyan, N., & Margolis, K. G. (2019). Reprint of: Serotonin as a link between the gut-brain-microbiome axes in autism spectrum disorders. Pharmacological Research, 140, 115–120. https://doi.org/10.1016/j.phrs.2018.12.023. DOI: https://doi.org/10.1016/j.phrs.2018.12.023
- Marler, S., Ferguson, B. J., Lee, E. B., Peters, B., Williams, K. C., McDonnell, E., Macklin, E. A., Levitt, P., Gillespie, C. H., Anderson, G. M., Margolis, K. G., Beversdorf, D. Q., & Veenstra-VanderWeele, J. (2016). Brief Report: Whole Blood Serotonin Levels and Gastrointestinal Symptoms in Autism Spectrum Disorder. Journal of Autism and Devlopment Disorders, 46(3), 1124-30.doi: 10.1007/s10803-015-2646-8. DOI: https://doi.org/10.1007/s10803-015-2646-8
- Abdelsalam, N. A., Hegazy, S. M., & Aziz, R. K. (2023). The curious case of Prevotella copri.Gut Microbes, 15(2), and 2249152. https://doi.org/10.1080/19490976.2023.2249152 . DOI: https://doi.org/10.1080/19490976.2023.2249152
- Iljazovic, A., Roy, U., Gálvez, E. J. C., Lesker, T. R., Zhao, B., Gronow, A., Amend, L., Will, S. E., Hofmann, J. D., Pils, M. C., Schmidt-Hohagen, K., Neumann-Schaal, M., & Strowig, T. (2021). Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunology,14(1), 113–124. https://doi.org/10.1038/s41385-020-0296-4. DOI: https://doi.org/10.1038/s41385-020-0296-4
- Pusceddu, M. M., El Aidy, S., Crispie, F., O’Sullivan, O., Cotter, P., Stanton, C., Kelly, P., Cryan, J. F., & Dinan, T. G. (2015). N-3 polyunsaturated fatty acids (PUFAs) reverse the impact of early-life stress on the GM. PloS One, 10(10), e0139721. https://doi.org/10.1371/journal.pone.0139721. DOI: https://doi.org/10.1371/journal.pone.0139721
- Cox, L. M., Yamanishi, S., Sohn, J., Alekseyenko, A. V., Leung, J. M., Cho, I., Kim, S. G., Li, H., Gao, Z., Mahana, D., Zárate Rodriguez, J. G., Rogers, A. B., Robine, N., Loke, P., & Blaser, M. J. (2014). Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell, 158(4), 705–721. https://doi.org/10.1016/j.cell.2014.05.052 DOI: https://doi.org/10.1016/j.cell.2014.05.052
- Deal, A., Cooper, N., Kirse, H. A., Uneri, A., Raab-Graham, K., Weiner, J. L., & Solberg Woods, L. C. (2021). Early life stress induces hyperactivity but not increased anxiety-like behavior or ethanol drinking in outbred heterogeneous stock rats. Alcohol (Fayetteville, N.Y.),91, 41–51. https://doi.org/10.1016/j.alcohol.2020.11.007 DOI: https://doi.org/10.1016/j.alcohol.2020.11.007
- Belcher, H. L., Morein-Zamir, S., Stagg, S. D., & Ford, R. M. (2023). Shining a Light on a Hidden Population: Social Functioning and Mental Health in Women Reporting Autistic Traits But Lacking Diagnosis. Journal of Autism and Developmental Disorders, 53(8), 3118–3132. https://doi.org/10.1007/s10803-022-05583-2 DOI: https://doi.org/10.1007/s10803-022-05583-2
- Garay, P. A., Hsiao, E. Y., Patterson, P. H., & McAllister, A. K. (2013). Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development. Brain, Behavior, and Immunity, 31, 54–68. https://doi.org/10.1016/j.bbi.2012.07.008 DOI: https://doi.org/10.1016/j.bbi.2012.07.008
- Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmerman, A. W., & Pardo, C. A. (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Annals of Neurology, 57(1), 67–81. https://doi.org/10.1002/ana.20315. DOI: https://doi.org/10.1002/ana.20315
- Chen, Z. et al.(2021). Gut microbial profile is associated with the severity of social impairment and IQ performance in children with autism spectrum disorder. Front. Psychiatry,12, 789864. https://doi.org/10.3389/fpsyt.2021.789864 DOI: https://doi.org/10.3389/fpsyt.2021.789864
- Strati, F. et al. (2017).New evidences on the altered GM in autism spectrum disorders. Microbiome ,5. h t t p s : / / d o i . o r g / 1 0 . 1 1 8 6 / s 4 0 1 6 8 - 0 1 7 - 0 2 4 2 - 1
- Bhusri, B., Sutheeworapong, S., Kittichotira, W., Kusonmano, K, Thammarongtham, C., Lertampaiporn, S., Prommeenate, P., Praphanphoj, V., Kittitharaphan, W., Dulsawat, S., Paenkaew, P.& Cheevadhanarak, S.(2025) Characterization of GM on gender and age groups bias in Thai patients with autism spectrum disorder . Scientific Reports, 15,2587, https://doi.org/10.1038/s41598-025-86740-2 DOI: https://doi.org/10.1038/s41598-025-98923-y
- Liu, X. et al. (2023).Sex differences in the oral microbiome, host traits, and their causal relationships. Science26, 105839. h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j .i s c i . 2 0 2 2 . 1 0 5 8 3 9 DOI: https://doi.org/10.1016/j.isci.2022.105839
- Zhang, Q. et al. (2021).Comparison of GM between adults with autism spectrum disorder and obese adults. PeerJ 9, e10946. https://doi.org/10.7717/peerj.10946 DOI: https://doi.org/10.7717/peerj.10946
- Mashima, I. et al. (2017).exploring the salivary microbiome of children stratified by the oral hygiene index. PLoS ONE12, 0185274.https://doi.org/10.1371/journal.pone.0185274 DOI: https://doi.org/10.1371/journal.pone.0185274
- Ahrens, A. P. et al. (2024).Infant microbes and metabolites point to childhood neurodevelopmental disorders. Cell 187, 1853-1873 e1815. https://doi.org/10.1016/j.cell.2024.02.035 DOI: https://doi.org/10.1016/j.cell.2024.02.035
- Gomez, M. V. et al. (2021).Early life exposure to environmental contaminants (BDE-47, TBBPA, and BPS) produced persistent alterations in fecal microbiome in adult male mice. Toxicol. Sci.,179, 14–30. https://doi.org/10.1093/toxsci/kfaa161 DOI: https://doi.org/10.1093/toxsci/kfaa161
- Thoene, M., Dzika, E., Gonkowski, S. & Wojtkiewicz, J. (2020).Bisphenols in food causes hormonal and obesogenic effects comparable to or worse than bisphenol A: A literature review. Nutrients,12.https://doi.org/10.3390/nu12020532 DOI: https://doi.org/10.3390/nu12020532
- Fasano, A. (2012). “Leaky Gut and Autoimmune Diseases.” Clinical Reviews in Allergy & Immunology,42, ( 1), 71–78. https:// doi. org/ 10.1007/ s1201 6-011-8291-x. DOI: https://doi.org/10.1007/s12016-011-8291-x
- Al-Ayadhi, L., Zayed, N., Bhat, R.S., Moubayed, N.M.S., Al-Muammar, M.N. and El-Ansary,A. (2021).The use of biomarkers associated with leaky gut as a diagnostic tool for early intervention in autism spectrum disorder: A systematic review. Gut Pathog, 13, 54. DOI: https://doi.org/10.1186/s13099-021-00448-y
- Buie, T. (2015). “Potential Etiologic Factors of Microbiome Disruption in Autism.” Clinical Therapeutics,37( 5), 976–983. https:// doi. org/ 10.1016/j. clint hera. 2015. 04. 001. DOI: https://doi.org/10.1016/j.clinthera.2015.04.001
- Onore, C., M. Careaga, and P. Ashwood. (2012). “The Role of Immune Dysfunction in the Pathophysiology of Autism.” Brain, Behavior, and Immunity,26( 3), 383–392. https:// doi. org/ 10. 1016/j. bbi. 2011. 08. 007. DOI: https://doi.org/10.1016/j.bbi.2011.08.007
- Yoo, M. H., T. Y. Kim, Y. H. Yoon, and J. Y. Koh. (2016). “Autism phenotypes in ZnT3 Null Mice: Involvement of Zinc Dyshomeostasis, MMP-9Activation and BDNF Upregulation.” Scientific Reports,6, 28548. https:// doi. org/ 10. 1038/ srep2 8548. DOI: https://doi.org/10.1038/srep28548
- Li F., Ke H. , Wang S. , Mao W., Fu C, Chen X , Fu Q ., Qin X., Huang Y., Li B. , Li S. , Xing J., Wang M., Deng W. (2023).Leaky Gut Plays a Critical Role in the Pathophysiology of Autism in Mice by Activating the Lipopolysaccharide Mediated Toll Like Receptor 4–Myeloid Differentiation Factor 88–Nuclear Factor Kappa B Signaling Pathway. Neurosci. Bull. 39(6),911–928.https://doi.org/10.1007/s12264-022-00993-9. DOI: https://doi.org/10.1007/s12264-022-00993-9
- de Magistris, L., Familiari, V., Pascotto ,A., Sapone, A., Frolli, A., Iardino, P, et al.(2010).Alterations of the IB in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr, 51, 418–424.
- D’Eufemia, P., Celli, M., Finocchiaro, R., Pacifico, L., Viozzi, L., Zaccagnini, M., et al. (1996) Abnormal IP in children with autism. Acta Paediatr, 85, 1076–1079. DOI: https://doi.org/10.1111/j.1651-2227.1996.tb14220.x
- Horvath, K., Papadimitriou, J.C., Rabsztyn, A., Drachenberg, C. and Tildon, J.T. (1999). Gastrointestinal abnormalities in children with autistic disorder. J Pediatr, 135, 559–563. DOI: https://doi.org/10.1016/S0022-3476(99)70052-1
- Fond, G., Boukouaci, W., Chevalier, G., Regnault, A., Eberl, G., Hamdani, N., et al.(2015).The “psychomicrobiotic”: Targeting microbiota in major psychiatric disorders: A systematic review. Pathologiebiologie, 63, 35–42. DOI: https://doi.org/10.1016/j.patbio.2014.10.003
- El-Ansary, A. and Al-Ayadhi, L. (2014). Relative abundance of short chain and polyunsaturated fatty acids in propionic acid-induced autistic features in rat pups as potential markers in autism. Lipids Health Dis, 13, 140. DOI: https://doi.org/10.1186/1476-511X-13-140
- Lucchina, L., Depino, A.M. (2014).Altered peripheral and central inflammatory responses in a mouse model of autism. Autism Res, 7, 273–289. DOI: https://doi.org/10.1002/aur.1338
- de Magistris, L., Familia, V., Pascotto, A., Sapone, A., Frolli, A., Iardino, P., et al. (2010). Alterations of the IB in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr, 51,418–424 DOI: https://doi.org/10.1097/MPG.0b013e3181dcc4a5
- Esnafoglu, E., Cırrık, S., Ayyıldız, S.N. Erdil, A., Erturk, E.Y., Daglı, A.,et al.(2017).Increased serum zonulin levels as an IP marker in autistic subjects. J Pediatr, 188, 240–244. DOI: https://doi.org/10.1016/j.jpeds.2017.04.004
- Kelly, J.R., Kennedy,P.J., Cryan, J.F., Dinan, T.G., Clarke, G.and Hyl N.P. (2015).Breaking down the barriers: The gut microbiome, IP and stress-related psychiatric disorders. Front Cell Neurosci, 9, 392. DOI: https://doi.org/10.3389/fncel.2015.00392
- Santocchi, E., Guiducci, L., Fulceri, F., Billeci, L., Buzzigoli, E., Apicella, F., et al.(2016).Gut to brain interaction in Autism Spectrum Disorders: A randomized controlled trial on the role of probiotics on clinical, biochemical and neurophysiological parameters. BMC Psychiatry, 16,183. DOI: https://doi.org/10.1186/s12888-016-0887-5
- Płociennikowska, A, H.romada-Judycka, A., Borzęcka, K. and Kwiatkowska, K. (2015) Co-operation of TLR4 and raft proteins in LPS induced pro-inflammatory signaling. Cell Mol Life Sci, 72, 557–581. DOI: https://doi.org/10.1007/s00018-014-1762-5
- Matta, S.M., Hill-Yardin, E.L., Crack, P.J. (2019).The influence of neuroinflammation in autism spectrum disorder. Brain Behav Immun, 79, 75–90. DOI: https://doi.org/10.1016/j.bbi.2019.04.037
- Greene, R.K., Walsh, E., Mosner, M.G., Dichter, G.S. (2019).A potential mechanistic role for neuroinflammation in reward processing impairments in autism spectrum disorder. Biol Psychol, 142, 1–12 DOI: https://doi.org/10.1016/j.biopsycho.2018.12.008
- Błażewicz, A., and Grabrucker. A. M. (2022). “Metal Profiles in Autism Spectrum Disorders: A Crosstalk Between Toxic and Essential Metals.”International Journal of Molecular Sciences,24(1), 308. https:// doi. org/ 10. 3390/ ijms2 4010308. DOI: https://doi.org/10.3390/ijms24010308
- Yasuda, H., and Tsutsui. T. (2013). “Assessment of Infantile Mineral Imbalances in Autism Spectrum Disorders (ASDs).” International Journal of Environmental Research and Public Health 10(11), 6027–6043. https:// doi. org/ 10. 3390/ ijerp h1011 6027. DOI: https://doi.org/10.3390/ijerph10116027
- Farina, M., and Aschner. M. (2019). “Glutathione Antioxidant System and Methylmercury-Induced Neurotoxicity: An Intriguing Interplay.” Biochimica et Biophysica Acta –General Subjects,1863(12), 129285. https:// doi. org/ 10. 1016/j. bbagen. 2019. 01. 007. DOI: https://doi.org/10.1016/j.bbagen.2019.01.007
- Frye, R. E., and Rossignol,D. A. (2011). “Mitochondrial Dysfunction Can Connect the Diverse Medical Symptoms Associated With Autism Spectrum Disorders.” Pediatric Research695 (2), 41r–47r. https://doi. org/ 10. 1203/ PDR. 0b013 e3182 12f16b DOI: https://doi.org/10.1203/PDR.0b013e318212f16b
- Napolioni, V., Persico, A. M. Porcelli, V.and Palmieri. L. (2011). “The mitochondrial aspartate/glutamate carrier AGC1 and calcium homeostasis: Physiological links and abnormalities in autism.Molecular Neurobiology44(1), 83–92. https:// doi. org/ 10. 1007/ s12035-011- DOI: https://doi.org/10.1007/s12035-011-8192-2
- Eggers, S., MidyaV., BixbyM., et al. (2023). Prenatal Lead Exposure Is Negatively Associated With the Gut Microbiome in Childhood. Frontiers in Microbiology,14, 1193919. https:// doi. org/ 10. 3389/ fmicb.2023. 1193919. DOI: https://doi.org/10.3389/fmicb.2023.1193919
- Han, S. J., Ha, K. H. Jeon, J. Y. Kim, H. J. Lee, K. W. and Kim.D. J. (2015). “Impact of cadmium eExposure on the association between lipopolysaccharide and metabolic syndrome.” International Journal of Environmental Research and Public Health, 12( 9), 11396–11409.https:// doi. Org/ 10. 3390/ ijerp h1209 11396. DOI: https://doi.org/10.3390/ijerph120911396
- Zhai, Q., Cen, S. Jiang, J. Zhao, J. Zhang, H. and Chen. W. (2019).
- “Disturbance of trace element and GM profiles as indicators of autism spectrum disorder: A pilot study of Chinese children.” Environmental Research, 171: ,501–509. https:// doi.org/ 10. 1016/j. envres.2019. 01. 060. DOI: https://doi.org/10.1016/j.envres.2019.01.060
- Shao, M., and Zhu,Y. (2020). Long-Term Metal Exposure Changes GutMicrobiota of Residents Surrounding a Mining and Smelting Area. Scientific Reports, 10(1) 4453. https:// doi. Org/ 10. 1038/ s4159 8-020-61143 -7. DOI: https://doi.org/10.1038/s41598-020-61143-7
- Chai, X., Chen, X. Yan, T. et al. (2024). IB impairmentinduced by gut microbiome and its metabolites in school-agechildrenwith Zinc deficiency. Nutrients,16(9), 1289. DOI: https://doi.org/10.3390/nu16091289
- Bakkaloglu, B., O'Roak, B. J.,Louvi, A.et al. (2008). Molecular cytogenetic analysis and resequencing of contactin associated protein-like2 in autism spectrum disorders. American Journal of Human Genetics,82(1), 165–173. https:// doi.org/ 10. 1016/j. ajhg. 2007. 09. 017. DOI: https://doi.org/10.1016/j.ajhg.2007.09.017
- Arking, D. E., Cutler, D. J.,Brune, C. W. et al. (2008). A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. American Journal of Human Genetics,82(1), 160–164. https:// doi. org/ 10. 1016/j. ajhg. 2007. 09. 015. DOI: https://doi.org/10.1016/j.ajhg.2007.09.015
- Parmeggiani, G., Buldrini, B., Fini, S.,Ferlini, A.and Bigoni. S.(2018). A new 3p14.2 microdeletion in a patient with intellectual disability and language impairment. Case Report and Review of the Literature. Mol Syndromol,9(4), 175–181. https:// doi. org/ 10. 1159/ 00048 9842. DOI: https://doi.org/10.1159/000489842
- Tan, Q., Orsso, C.E., Deehan, E.C., Kung, J.Y., Tun, H.M.,Wine, E., Madsen, K.L., Zwaigenbaum, L., Haqq, A.M. (2021).Probiotics, prebiotics, synbiotics, and fecal micrombiota transplantation in the treatment of behavioral symptoms of autism spectrum disorder: A systematic review. Autism Res., 14, 1820–1836. [CrossRef]. DOI: https://doi.org/10.1002/aur.2560
- Abuaish, S., Al-Otaibi, N.M., Abujamel, T.S., Alzahrani, S.A., Alotaibi, S.M., Alshawakir, Y.A., Aabed, K., El-Ansary, A. (2021).Fecal transplant and Bifidobacterium treatments modulate gut Clostridium bacteria and rescue social impairment and hippocampal BDNFexpression in a rodent model of autism. Brain Sci., 11, 1038. [CrossRef]. DOI: https://doi.org/10.3390/brainsci11081038
- Wong, C.B., Odamaki, T., Xiao, J.-Z. (2019).Beneficial effects of Bifidobacterium Longum Subsp. Longum BB536 on human health:Modulation of gut microbiome as the principal action. J. Funct. Foods, 54, 506–519. [CrossRef] DOI: https://doi.org/10.1016/j.jff.2019.02.002
- Finegold, S.M., Dowd, S.E.; Gontcharova, V.; Liu, C.; Henley, K.E.; Wolcott, R.D.; Youn, E.; Summanen, P.H.; Granpeesheh,D.; Dixon, D.; et al. Pyrosequencing Study of Fecal Microflora of Autistic and Control Children. Anaerobe 2010, 16, 444–453.[CrossRef] [PubMed] DOI: https://doi.org/10.1016/j.anaerobe.2010.06.008
- de Angelis, M., Piccolo, M., Vannini, L.,Siragusa, S., de Giacomo, A.,Serrazzanetti, D.I., Cristofori, F., Guerzoni, M.E., Gobbetti, M., Francavilla, R. (2013).Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS ONE, 8, e76993. [CrossRef] [PubMed] DOI: https://doi.org/10.1371/journal.pone.0076993
- Sauer, A.K., Bockmann, J., Steinestel, K., Boeckers, T.M., Grabrucker, A.M. (2019) .Altered intestinal morphology and microbiota composition in the autism spectrum disorders associated SHANK3 mouse model. Int. J. Mol. Sci., 20, 2134. [CrossRef]. DOI: https://doi.org/10.3390/ijms20092134
- Ding, X., Xu, Y., Zhang, X., Zhang, L., Duan, G., Song, C., Li, Z.,Yang, Y., Wang, Y., Wang, X. et al. (2020).GM changes in Patients with autism spectrum disorders. J. Psychiatr. Res., 129, 149–159. [CrossRef] [PubMed]. DOI: https://doi.org/10.1016/j.jpsychires.2020.06.032
- Guo, P.,Zhang, K., Ma, X., He, P. (2020).Clostridium Species as Probiotics: Potentials and Challenges. J. Anim. Sci. Biotechnol., 11, 24. [CrossRef] DOI: https://doi.org/10.1186/s40104-019-0402-1
- Nagano, Y., Itoh, K., Honda, K. (2012).The Induction of Treg cells by gut-indigenous Clostridium. Curr. Opin. Immunol., 24, 392–397. [CrossRef] DOI: https://doi.org/10.1016/j.coi.2012.05.007
- Hold, G.L., Pryde, S.E.,Russell, V.J., Furrie, E., Flint, H.J. (2002).Assessment of microbial diversity in human colonic samples by 16S RDNA sequence analysis. FEMS microbiol. Ecol., 39, 33–39. [CrossRef]. DOI: https://doi.org/10.1111/j.1574-6941.2002.tb00904.x
- Adams, J.B., Audhya, T., McDonough-Means, S., Rubin, R.A., Quig, D.; Geis, E.,Gehn, E., Loresto, M., Mitchell, J., Atwood, S.et al. (2011).Effect of vitamin/mineral supplement on children and adults with autism. BMC Pediatr., 11, 111. DOI: https://doi.org/10.1186/1471-2431-11-111
- Gvozdjáková, A., Kucharská, J., Ostatníková, D., Babinská, K., Nakládal, D., Crane, F.L. (2014).Ubiquinol improves symptoms in children with autism. Oxid. Med. Cell. Longev., 798957. DOI: https://doi.org/10.1155/2014/798957
- van Sadelhoff, J.H.J., Pardo, P.P., Wu, J., Garssen, J., van Bergenhenegouwen, J., Hogenkamp, A., Hartog, A., Kraneveld, A.D. (2019).The Gut-Immune-Brain Axis in Autism Spectrum Disorders; a Focus on Amino Acids. Front. Endocrinol., 10, 247. DOI: https://doi.org/10.3389/fendo.2019.00247
- Rossignol, D.A., Frye, R.E. (2021).The effectiveness of cobalamin (B12) treatment for autism spectrum disorder: A systematic review and meta-analysis. J. Pers. Med., 11, 784. DOI: https://doi.org/10.3390/jpm11080784
- Bravo, J.A., Forsythe, P., Chew, M.V., Escaravage, E.,Savignac, H.M., Dinan, T.G., Bienenstock, J., Cryan, J.F. (2011).Ingestion of Lactobacillus Strain Regulates Emotional Behavior and Central GABA Receptor Expression in a Mouse via the Vagus Nerve. Proc. Natl. Acad. Sci. USA, 108, 16050–16055. [CrossRef] DOI: https://doi.org/10.1073/pnas.1102999108
- Mensi, M.M., Rogantini, C., Marchesi, M., Borgatti, R.,Chiappedi, M. (2021).Lactobacillus Plantarum PS128 and other probiotics in children and adolescents with autism spectrum disorder: areal-world experience. Nutrients, 13, 2036. [CrossRef]. DOI: https://doi.org/10.3390/nu13062036
- Santocchi, E., Guiducci, L., Prosperi, M., Calderoni, S., Gaggini, M.,Apicella, F., Tancredi, R., Billeci, L., Mastromarino, P., Grossi,E., et al. (2020).Effects of probiotic supplementation on gastrointestinal, senso(ry and core symptoms in autism spectrum disorders:A randomized controlled trial. Front. Psychiatry, 11, 550593. [CrossRef] [PubMed]. DOI: https://doi.org/10.3389/fpsyt.2020.550593
- Grossi, E., Melli, S., Dunca, D., Terruzzi, V. (2016).Unexpected improvement in core autism spectrum disorder symptoms after long-term treatment with probiotics. SAGE Open Med. Case Rep., 4, 2050313X16666231. [CrossRef] [PubMed]. DOI: https://doi.org/10.1177/2050313X16666231
- Tomova, A., Husarova, V.,Lakatosova, S., Bakos, J., Vlkova, B., Babinska, K., Ostatnikova, D. (2015).Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav., 138, 179–187. [CrossRef]/ DOI: https://doi.org/10.1016/j.physbeh.2014.10.033
- He, X.; Liu, W., Tang, F., Chen, X., Song, G. (2023).Effects of probiotics on autism
- spectrum disorder in children: A systematic review and meta-analysis of clinical trials. Nutrients, 15, 1415. [CrossRef] DOI: https://doi.org/10.3390/nu15061415
- Alam, S., Westmark, C. J. and McCullagh. E. A. (20220. Diet in Treatmentof autism spectrum disorders. Frontiers in Neuroscience16, 1031016.https:// doi. org/ 10. 3389/ fnins. 2022. 1031016 DOI: https://doi.org/10.3389/fnins.2022.1031016
- Alsubaiei, S. R. M., Alfawaz, H. A.,Bhat, R. S. and El-Ansary. A. (2023). Nutritional intervention as a complementary neuroprotective approach against propionic acid-induced neurotoxicity and associated biochemical autistic features in rat pups. Metabolites,13(6)738. https:// doi. org/ 10. 3390/ metab o1306 0738. DOI: https://doi.org/10.3390/metabo13060738
- Usama, U., Khan, M.and FatimaS. (2018). Role of Zinc in shaping the gut microbiome; proposedmechanisms and evidence from the literature. Journal of Gastrointestinal & Digestive System, 8, 1000548. https:// doi. org/ 10. 4172/ 2161-069X. 1000548.
- Xia, P., Lian, S. Wu, Y. Yan, L. Quan, G.and Zhu. G. (2021). “Zinc is an important inter-kingdom signal between the host and microbe.Veterinary Research, 52(1), 39. https:// doi. org/ 10. 1186/ s1356 7-021-00913-1. DOI: https://doi.org/10.1186/s13567-021-00913-1
Downloads
Similar Articles
- Afaf El-Ansary , Laila Al-Ayadhi, Manan Al-Hakbany, Veronika Polyakova, Sergey Suchkov, The relative usefulness of the identification and analysis of biomarkers for the diagnosis of autism spectrum disorders in early childhood and the implementation of personalized precision medicine , International Journal for Autism Challenges & Solution: Vol. 1 No. 1 (2024): International Journal for Autism Challenges & Solution
- Geir Bjørklund, Afaf El-Ansary, GABAergic Dysregulation in Autism Spectrum Disorder: Collaborative Insights on Neurobiological Complexity , International Journal for Autism Challenges & Solution: Vol. 1 No. 1 (2024): International Journal for Autism Challenges & Solution
- Ahmad Zamir Che Daud, Illiya Azman, Nurfatin Nadhirah Riznan, Saher Alsabbah, Erna Faryza Mohd Poot, Noor Aziella Mohd Nayan, Mohammed Alrashdi, Linking Sensory Processing and Fine Motor Function to Daily Living Skills: A Comparative Study Among Children with Autism Spectrum Disorder, Down Syndrome and Typically Developing Peers , International Journal for Autism Challenges & Solution: Vol. 2 No. 2 (2025): International Journal for Autism Challenges & Solution
- Geir Bjørklund, Ramesa Shafi Bhat, The Role of Oxytocin in Autism Spectrum Disorder: Current Evidence and Therapeutic Implications , International Journal for Autism Challenges & Solution: Vol. 1 No. 2 (2024): International Journal for Autism Challenges & Solution
- Abdul Majid Bhat, Ramesa Shafi Bhat, Network Pharmacology and Molecular Docking Reveal Multi-Target Mechanisms of Luteolin Against Autism Spectrum Disorder , International Journal for Autism Challenges & Solution: Vol. 2 No. 2 (2025): International Journal for Autism Challenges & Solution
- Darren L. Ashwod , Implications of Resources and support centers to enhance autism disorder treatment , International Journal for Autism Challenges & Solution: Vol. 1 No. 2 (2024): International Journal for Autism Challenges & Solution
- Asmaa Afif, The Role of Artificial Intelligence in Enhancing Identification of Autism in Children Through Motor Abnormalities , International Journal for Autism Challenges & Solution: Vol. 1 No. 2 (2024): International Journal for Autism Challenges & Solution
- John Mendy, Resilience Building Strategies in Autism Research: A Capabilities Resilience and Inclusion Model , International Journal for Autism Challenges & Solution: Vol. 2 No. 2 (2025): International Journal for Autism Challenges & Solution
- Manara Al Hamieli, Dr. Fawaz Habbal, Developing an AI-Driven Mobile Application for Early Autism Diagnosis and Classification , International Journal for Autism Challenges & Solution: Vol. 1 No. 2 (2024): International Journal for Autism Challenges & Solution
- Ramesa Shafi Bhat , Reem Alkhudhairy, Abeer Abdullah Alshehri, Rajesh Singh, Nanotechnology - an innovative approach to cope with the distinctive challenges linked with Autism Spectrum Disorder , International Journal for Autism Challenges & Solution: Vol. 1 No. 1 (2024): International Journal for Autism Challenges & Solution
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Asmaa Afif, The Role of Artificial Intelligence in Enhancing Identification of Autism in Children Through Motor Abnormalities , International Journal for Autism Challenges & Solution: Vol. 1 No. 2 (2024): International Journal for Autism Challenges & Solution
- Ibrahim Hassan Alzoubi , Effective Strategies for Developing Attention Span in Children with Autism Spectrum Disorder , International Journal for Autism Challenges & Solution: Vol. 2 No. 2 (2025): International Journal for Autism Challenges & Solution
- Mudathir Adebusuyi Adewole, Ayodeji Oladeji Olanrewaju, Ishiaq Olayinka Omotosho, Yetunde C. Adeniyi, Blood Lead Level, Urinary Porphobilinogen and Serum Acetylcholine in Nigerian Children with Autism Spectrum Disorder , International Journal for Autism Challenges & Solution: Vol. 2 No. 2 (2025): International Journal for Autism Challenges & Solution