Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 4 No. 1 (2025): International Journal of Applied Technology in Medical Sciences

The Role of AI in Early Diagnosis, Management, and Clinical Research of Primary Immunodeficiency Diseases: Insights from GCC Immunologists

  • Dr. Najmudeen Sulthan
  • Dr. Shorooq Banjar
  • Dr.Husam Malibary
  • Dr.Hakkim Ebrahim Mohammed Ali
  • Dr. Sharfras Navas.M.A
  • Dr. Saimha Barvin
Submitted
March 31, 2025
Published
2025-05-06

Abstract

Primary Immunodeficiency Diseases (PIDs) are a family of approximately 450 rare disorders each with distinct diagnostic challenges because of their diverse clinical signs and the community's limited knowledge of them. Because of these challenges, patients receive their diagnoses later than optimal, tend to experience more complications, and generally receive suboptimal care. The correct and timely identification of patients with PIDs remains critical because it allows for a better prognosis as well as timely and effective management. The advancements in artificial intelligence, especially machine learning and natural language processing show potential to address current challenges in the early diagnosis of PIDs and the development of optimal management and research strategies. This study aims to investigate the perception of immunologists from GCC countries on the application of AI in the diagnosis and management of PID and in research to understand their level of awareness of AI, their perceptions of the usefulness of AI, and the major difficulties that might limit its adoption. The findings of this study can inform policy making, resource management, and strategy development for the incorporation of AI into PID care to improve patient outcomes.

References

  1. Abolhassani, H., Azizi, G., Sharifi, L., Yazdani, R., Mohsenzadegan, M., Delavari, S., Sohani, M., Shirmast, P., Chavoshzadeh, Z., Mahdaviani, S.A., Kalantari, A., Tavakol, M., Jabbari-Azad, F., Ahanchian, H., Momen, T., Sherkat, R., Sadeghi-Shabestari, M., Aleyasin, S., Esmaeilzadeh, H. and Aghamohammadi, A. (2020) ‘Global systematic review of primary immunodeficiency registries’, Expert Review of Clinical Immunology, vol. 16, no. 7, pp. 717–732. doi:10.1080/1744666X.2020.1801422.
  2. Alowais, S.A., Alghamdi, S.S., Alsuhebany, N., Alqahtani, T., Alshaya, A.I., Almohareb, S.N., Aldairem, A., Alrashed, M., Bin Saleh, K., Badreldin, H.A., Al Yami, M.S., Al Harbi, S. and Albekairy, A.M. (2023) ‘Revolutionizing healthcare: The role of artificial intelligence in clinical practice’, BMC Medical Education, 23(1), p. 689. doi:10.1186/s12909-023-04698-z.
  3. Balogh, E.P., Miller, B.T., Ball, J.R., Committee on Diagnostic Error in Health Care, Board on Health Care Services, Institute of Medicine and The National Academies of Sciences, Engineering and Medicine (2015) ‘The diagnostic process’, in Improving Diagnosis in Health Care. Washington, DC: National Academies Press (US). Available at: https://www.ncbi.nlm.nih.gov/books/NBK338593/.
  4. Barbouche, M.R., Galal, N., Ben-Mustapha, I., Jeddane, L., Mellouli, F., Ailal, F., Bejaoui, M., Boutros, J., Marsafy, A. and Bousfiha, A.A. (2011) ‘Primary immunodeficiencies in highly consanguineous North African populations’, Annals of the New York Academy of Sciences, vol. 1238, pp. 42–52. doi:10.1111/j.1749-6632.2011.06260.x.
  5. Bekbolatova, M., Mayer, J., Ong, C.W. and Toma, M. (2024) ‘Transformative potential of AI in healthcare: Definitions, applications, and navigating the ethical landscape and public perspectives’, Healthcare, vol. 12, no. 2, p. 125. doi:10.3390/healthcare12020125.
  6. Bohr, A. and Memarzadeh, K. (2020) ‘The rise of artificial intelligence in healthcare applications’, in Artificial Intelligence in Healthcare, pp. 25–60. doi:10.1016/B978-0-12-818438-7.00002-2.
  7. El-Sayed, Z.A. and Radwan, N. (2020) ‘Newborn screening for primary immunodeficiencies: The gaps, challenges, and outlook for developing countries’, Frontiers in Immunology, vol. 10, p. 2987. doi:10.3389/fimmu.2019.02987.
  8. Johnson, K.B., Wei, W., Weeraratne, D., Frisse, M.E., Misulis, K., Rhee, K., Zhao, J. and Snowdon, J.L. (2021) ‘Precision medicine, AI, and the future of personalized health care’, Clinical and Translational Science, vol. 14, no. 1, pp. 86–93. doi:10.1111/cts.12884.
  9. MacMath, D., Chen, M. and Khoury, P. (2023) ‘Artificial intelligence: Exploring the future of innovation in allergy immunology’, Current Allergy and Asthma Reports, 1. doi:10.1007/s11882-023-01084-z.
  10. Mansour, T. and Bick, M. (2024) ‘How can physicians adopt AI-based applications in the United Arab Emirates to improve patient outcomes?’, Digital Health, vol. 10, p. 20552076241284936. doi:10.1177/20552076241284936.
  11. McCusker, C., Upton, J. and Warrington, R. (2018) ‘Primary immunodeficiency’, Allergy, Asthma, and Clinical Immunology, vol. 14, no. 2. supplement 2, p. 61. doi:10.1186/s13223-018-0290-5.
  12. Mennella, C., Maniscalco, U., De Pietro, G. and Esposito, M. (2024) ‘Ethical and regulatory challenges of AI technologies in healthcare: A narrative review’, Heliyon, vol. 10, no. 4, p. e26297. doi:10.1016/j.heliyon.2024.e26297.
  13. Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K. and Tekade, R.K. (2021) ‘Artificial intelligence in drug discovery and development’, Drug Discovery Today, vol. 26, no. 1, pp. 80–93. doi:10.1016/j.drudis.2020.10.010.
  14. Rane, N. (2024) ‘Acceptance of artificial intelligence: Key factors, challenges, and implementation strategies’, ResearchGate. Available at: https://doi.org/10.48185/jaai.v5i2.1017.
  15. Rivière, J.G., Soler Palacín, P. and Butte, M.J. (2024) ‘Proceedings from the inaugural Artificial Intelligence in Primary Immune Deficiencies (AIPID) conference’, The Journal of Allergy and Clinical Immunology, vol. 153, no. 3, pp. 637–642. doi:10.1016/j.jaci.2024.01.002.
  16. Sheikhalishahi, S., Miotto, R., Dudley, J.T., Lavelli, A., Rinaldi, F. and Osmani, V. (2019) ‘Natural language processing of clinical notes on chronic diseases: Systematic review’, JMIR Medical Informatics, 7(2), p. e12239. doi:10.2196/12239.
  17. Topol, E.J. (2019) ‘High-performance medicine: The convergence of human and artificial intelligence’, Nature Medicine, vol. 25, no. 1, pp. 44–56. doi:10.1038/s41591-018-0300-7.

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>