Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 4 No. 2 (2025): International Journal of Applied Technology in Medical Sciences

Translational applications of exosomal proteomics in personalised medicine: using detailed proteomic analysis of exosomes to develop individualised therapeutic strategies.

  • Saima Zaheer
  • Muhammad Ilyas
Submitted
December 5, 2025
Published
2025-12-29

Abstract

Exosomal proteomics is becoming an indispensable asset in the advancement of personalised medicine, offering a non-invasive means of disease characterisation, biomarker identification, and therapy customisation. Exosomes - nanoscale extracellular vesicles secreted by nearly all cell types, encapsulate a complex cargo of proteins, lipids, metabolites, and nucleic acids that mirror the physiological or pathological condition of their cellular origin. Among these, the proteomic constituents offer critical insight into intracellular pathways, rendering them highly valuable for elucidating disease mechanisms and tailoring molecularly informed treatments. Recent innovations in mass spectrometry-based proteomic technologies have refined the ability to decode disease-specific exosomal protein signatures, enabling early-stage diagnosis and real-time monitoring via liquid biopsies, especially in oncology. Additionally, exosomes are being investigated as next-generation therapeutic vehicles, engineered to deliver targeted biomolecules with high biocompatibility and minimal immunogenicity. Despite ongoing challenges in isolation standardisation, cargo heterogeneity, and clinical scalability, progress in exosome engineering and proteomic analytics continues to unlock new possibilities. The integration of exosomal proteomics into clinical practice marks a transformative shift towards precision medicine, where treatment strategies are increasingly aligned with individual molecular profiles. Exosomal proteomics is becoming an indispensable asset in the advancement of personalised medicine, offering a non-invasive means of disease characterisation, biomarker identification, and therapy customisation. Exosomes - nanoscale extracellular vesicles secreted by nearly all cell types, encapsulate a complex cargo of proteins, lipids, metabolites, and nucleic acids that mirror the physiological or pathological condition of their cellular origin. Among these, the proteomic constituents offer critical insight into intracellular pathways, rendering them highly valuable for elucidating disease mechanisms and tailoring molecularly informed treatments. Recent innovations in mass spectrometry-based proteomic technologies have refined the ability to decode disease-specific exosomal protein signatures, enabling early-stage diagnosis and real-time monitoring via liquid biopsies, especially in oncology. Additionally, exosomes are being investigated as next-generation therapeutic vehicles, engineered to deliver targeted biomolecules with high biocompatibility and minimal immunogenicity. Despite ongoing challenges in isolation standardisation, cargo heterogeneity, and clinical scalability, progress in exosome engineering and proteomic analytics continues to unlock new possibilities. The integration of exosomal proteomics into clinical practice marks a transformative shift towards precision medicine, where treatment strategies are increasingly aligned with individual molecular profiles.

References

  1. Abramowicz, A., Marczak, L., Wojakowska, A., Widlak, P. and Pietrowska, M., 2018. Reverse-phase chromatography enables comprehensive analysis of the surface proteins on extracellular vesicles. Proteomics, 18(3–4), p.1700361. https://doi.org/10.1002/pmic.201700361 DOI: https://doi.org/10.1002/pmic.201700361
  2. Abramowicz, A., Widlak, P. and Pietrowska, M., 2016. Proteomic analysis of exosomal cargo: the challenge of high-purity vesicle isolation. Molecular BioSystems, 12(5), pp.1407–1419. https://doi.org/10.1039/C5MB00782D DOI: https://doi.org/10.1039/C6MB00082G
  3. Adamiak, M. and Sahoo, S., 2018. Exosomes in myocardial repair: Advances and challenges in the development of next-generation therapeutics. Molecular Therapy, 26(7), pp.1635–1643. https://doi.org/10.1016/j.ymthe.2018.04.024 DOI: https://doi.org/10.1016/j.ymthe.2018.04.024
  4. Adeyanju, O.O. and Ogunjobi, O.J., 2024. Clinical translation of artificial intelligence in omics-driven biomarker discovery. Bioinformatics Advances, 3(1), vbad121. https://doi.org/10.1093/bioadv/vbad121 DOI: https://doi.org/10.1093/bioadv/vbad121
  5. Aghebati-Maleki, A. et al. (2019) 'Exosomes and cancer: the new frontier of therapeutic and diagnostic nanomedicine', Journal of Cellular Physiology, 234(3), pp. 2174–2182. https://doi.org/10.1002/jcp.27126 DOI: https://doi.org/10.1002/jcp.28875
  6. Ahmad, T., Shukla, R. and Singh, A., 2021. Explainable AI in biomedicine: Interpreting machine learning for proteomic applications. Briefings in Bioinformatics, 22(4), pp.bbaa399. https://doi.org/10.1093/bib/bbaa399 DOI: https://doi.org/10.1093/bib/bbaa399
  7. Ahmed, A. (2024). Clinical Applications of Personalised Therapies. Journal of Precision Medicine, 12(1), pp.34-45. https://doi.org/10.1016/j.jpm.2024.01.003
  8. Al-Madhagi, H. (2024) 'Exosomes in diagnostics and therapeutics: opportunities and challenges', Biomedical Reports, 20(2), pp. 128–138.
  9. Alshubaily, F. and Al-Zahrani, A. (2021) 'Therapeutic perspectives of exosomes in metabolic diseases', Journal of Translational Medicine, 19(1), pp. 312–322. https://doi.org/10.1186/s12967-021-02961-2
  10. Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S. and Wood, M.J.A., 2011. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 29(4), pp.341–345. https://doi.org/10.1038/nbt.1807
  11. Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S. and Wood, M.J.A., 2011. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 29(4), pp.341–345. https://doi.org/10.1038/nbt.1807 DOI: https://doi.org/10.1038/nbt.1807
  12. Anand, S., Samuel, M., Kumar, S. and Mathivanan, S., 2017. Ticket to a bubble ride: Cargo sorting into exosomes and extracellular vesicles. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1865(11), pp.1404–1414. https://doi.org/10.1016/j.bbapap.2017.05.001 DOI: https://doi.org/10.1016/j.bbapap.2017.05.001
  13. Andre, F. et al. (2024) 'Emerging roles of exosomal proteomics in oncology', Nature Reviews Clinical Oncology. https://doi.org/10.1038/s41571-024-00879-y
  14. Angel, T.E., Aryal, U.K., Hengel, S.M. et al., 2012. Mass spectrometry-based proteomics: existing capabilities and future directions. Chemical Society Reviews, 41(10), pp.3912–3928. https://doi.org/10.1039/C2CS15387C DOI: https://doi.org/10.1039/c2cs15331a
  15. Ankney, J.A., Muneer, A. and Chen, X., 2018. Relative and absolute quantitation in mass spectrometry-based proteomics. Annual Review of Analytical Chemistry, 11(1), pp.49–77. https://doi.org/10.1146/annurev-anchem-061417-010127 DOI: https://doi.org/10.1146/annurev-anchem-061516-045357
  16. Ansari, F.J. et al. (2023) ‘Comparison of ultracentrifugation, ultrafiltration and precipitation methods for exosome isolation’, Extracellular Vesicle Research, 8(2), pp. 115–126. https://doi.org/10.1134/S1990747822030096 sciencedirect.com+15pubmed.ncbi.nlm.nih.gov+15researchgate.net+15
  17. Antimisiaris, S.G., Mourtas, S. and Marazioti, A., 2021. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics, 13(5), p.681. https://doi.org/10.3390/pharmaceutics13050681 DOI: https://doi.org/10.3390/pharmaceutics13050681
  18. Armstrong, J.P.K. and Stevens, M.M., 2019. Strategic design of extracellular vesicle drug delivery systems. Advanced Drug Delivery Reviews, 130, pp.12–16. https://doi.org/10.1016/j.addr.2018.07.010 DOI: https://doi.org/10.1016/j.addr.2018.06.017
  19. Arzumanyan, G., 2023. Regulatory strategies for integrating AI-based diagnostics into clinical practice. Nature Biomedical Engineering, 7(3), pp.245–248. https://doi.org/10.1038/s41551-023-00943-3
  20. Bano, S., Ramasamy, T.S. and Abu Kasim, N.H., 2021. Recent trends in the isolation, characterisation and application of extracellular vesicles. Cell and Bioscience, 11(1), p.61. https://doi.org/10.1186/s13578-021-00572-3 DOI: https://doi.org/10.1039/D1RA01576A
  21. Barile, L. and Vassalli, G., 2017. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacology & Therapeutics, 174, pp.63–78. https://doi.org/10.1016/j.pharmthera.2017.02.020 DOI: https://doi.org/10.1016/j.pharmthera.2017.02.020
  22. Barturen, G., Beretta, L., Cervera, R., van Vollenhoven, R.F., Alarcón-Riquelme, M.E. and the PRECISESADS Clinical Consortium, 2020. Moving towards a molecular taxonomy of autoimmune diseases. Nature Reviews Rheumatology, 16(2), pp.103–116. https://doi.org/10.1038/s41584-019-0340-6
  23. Boriachek, K. et al. (2018) 'Biological functions and current advances in isolation and detection strategies for exosome nanovesicles', Small, 14(6), p. 1702153. https://doi.org/10.1002/smll.201702153 DOI: https://doi.org/10.1002/smll.201702153
  24. Campo da Paz, E. et al. (2018). ‘Exosomal CEA as an indicator of therapeutic efficacy in colorectal cancer’, Journal of Clinical Oncology, 36(15), pp. 250–258. https://doi.org/10.1200/JCO.2018.36.15
  25. Cao, J. et al. (2019) 'Tumour-derived exosomal proteins as diagnostic biomarkers in cancer', Journal of Experimental & Clinical Cancer Research, 38(1), pp. 1–14. https://doi.org/10.1186/s13046-019-1138-1
  26. Chan, B. et al. (2019). 'Exosomal miRNAs in autoimmune pathology', Autoimmunity Reviews, 18(5), pp.463–472. https://doi.org/10.1016/j.autrev.2019.02.001 DOI: https://doi.org/10.1016/j.autrev.2019.02.001
  27. Charest, M., 2020. Extracellular vesicles: new perspectives in diagnosis and therapy. Clinical Chemistry and Laboratory Medicine (CCLM), 58(4), pp.493–502. https://doi.org/10.1515/cclm-2019-0965
  28. Chen, C.-L., Lai, Y.-H., Yen, J.-T., et al., 2020. A lab on a chip platform for immunocapture and mass spectrometric analysis of exosomal proteins from whole blood. Biosensors and Bioelectronics, 168, p.112560. https://doi.org/10.1016/j.bios.2020.112560 DOI: https://doi.org/10.1016/j.bios.2020.112560
  29. Chen, T., Guo, J., Yang, M., Zhu, X., Cao, X. and Kang, J., 2018. Chemoresistance induced by exosomes derived from cancer-associated fibroblasts in colorectal cancer. Molecular Cancer, 17(1), p.114. https://doi.org/10.1186/s12943-018-0856-1
  30. Cheng, L., Zhang, K., Qing, Y., Xie, H. and Xu, H., 2021. Progress and challenges in the application of exosomes for personalised medicine. Journal of Hematology & Oncology, 14(1), pp.1–21. https://doi.org/10.1186/s13045-021-01075-4
  31. Chia, B.S., Low, Y.P., Wang, Q., Li, P. and Gao, Z., 2017. Advances in exosome quantification techniques. Trends in Analytical Chemistry, 89, pp.59–82. https://doi.org/10.1016/j.trac.2017.01.017 DOI: https://doi.org/10.1016/j.trac.2016.10.012
  32. Contreras Naranjo, J.C., Wu, H.-J. and Ugaz, V.M. (2017) ‘Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalised medicine’, Lab on a Chip, 17(21), pp. 3558–3577. https://doi.org/10.1039/c7lc00592j pubs.rsc.org+4pubmed.ncbi.nlm.nih.gov+4techscience.com+4 DOI: https://doi.org/10.1039/C7LC00592J
  33. Coumans, F.A.W., Brisson, A.R., Buzás, E.I., Dignat-George, F., Drees, E.E.E., El-Andaloussi, S., Emanueli, C., Gasecka, A., Hendrix, A., Hill, A.F., Lacroix, R., Lee, Y., et al., 2017. Methodological guidelines to study extracellular vesicles. Circulation Research, 120(10), pp.1632–1648. https://doi.org/10.1161/CIRCRESAHA.117.309417 DOI: https://doi.org/10.1161/CIRCRESAHA.117.309417
  34. Debbarma, S. et al. (2024) 'Proteomic analysis of exosomes in chronic disease', Proteomics, 24(3), pp. 145–162.
  35. Dens, L.C., Varela, R., Dominguez, C., et al., 2024. MassIVE-KB: a knowledge base for reprocessed mass spectrometry data. Journal of Proteome Research, 23(1), pp.112–123. https://doi.org/10.1021/acs.jproteome.3c00671 DOI: https://doi.org/10.1021/acs.jproteome.3c00671
  36. Dharani, P. and Kamaraj, R. (2024). Barriers to Implementation of Personalised Medicine. Healthcare Policy Review, 8(2), pp.22-30. https://doi.org/10.1002/hpr.20240082
  37. Doroudian, M. and Krylova, K. (2022) 'Liquid biopsy: exosomal miRNAs and proteomics', Cancer Letters, 531, pp. 81–89. https://doi.org/10.1016/j.canlet.2022.01.021 DOI: https://doi.org/10.1016/j.canlet.2022.01.021
  38. Dwivedi, M. et al. (2023) 'Standardisation challenges in exosome-based diagnostics', Translational Research, 251, pp. 45–59. https://doi.org/10.1016/j.trsl.2023.01.005 DOI: https://doi.org/10.1016/j.trsl.2023.01.005
  39. Ebrahimi, A. et al. (2024) 'Blood-brain barrier transport via engineered exosomes', Nanomedicine, 47(5), pp. 212–223.
  40. El Andaloussi, S., Mäger, I., Breakefield, X.O. and Wood, M.J.A., 2013. Extracellular vesicles: biology and emerging therapeutic opportunities. Nature Reviews Drug Discovery, 12(5), pp.347–357. https://doi.org/10.1038/nrd3978 DOI: https://doi.org/10.1038/nrd3978
  41. El Safadi, D., Mokhtari, A., Krejbich, M., Lagrave, A., Hirigoyen, U., Lebeau, G., Viranaicken, W., & Krejbich-Trotot, P. (2024). Exosome-Mediated Antigen Delivery: Unveiling Novel Strategies in Viral Infection Control and Vaccine Design. Vaccines, 12(3), 280. https://doi.org/10.3390/vaccines12030280 DOI: https://doi.org/10.3390/vaccines12030280
  42. Elsharkasy, O.M., Nordin, J.Z., Hagey, D.W., de Jong, O.G., Schiffelers, R.M., Andaloussi, S.E. and Vader, P., 2020. Extracellular vesicles as drug delivery systems: Why and how? Advanced Drug Delivery Reviews, 159, pp.332–343. https://doi.org/10.1016/j.addr.2020.06.012 DOI: https://doi.org/10.1016/j.addr.2020.04.004
  43. Erisa, F., 2024. AI integration in omics: Navigating clinical and ethical implications. Clinical Bioinformatics, 18(1), pp.32–44. https://doi.org/10.1016/j.clinbio.2024.01.004
  44. Fan, S. and Poetsch, A., 2023. Proteomic research of extracellular vesicles in clinical biofluids. Proteomes, 11(2), p.18. https://doi.org/10.3390/proteomes11020018 DOI: https://doi.org/10.3390/proteomes11020018
  45. Feng, D., Zhao, W., Ye, Y., Bai, X., Ma, Y. and Ren, S., 2022. Clinical and regulatory perspectives of exosomes in diagnostics and therapeutics. Frontiers in Cell and Developmental Biology, 10, p.870354. https://doi.org/10.3389/fcell.2022.870354
  46. Ferreira, R.C., López-Isac, E., Goncalves, A.P. et al., 2023. Stratification of RA patients through unsupervised proteomic clustering. Annals of the Rheumatic Diseases, 82(5), pp.678–685. https://doi.org/10.1136/ard-2022-223421
  47. Foroutan, A. (2015). Composite Biomarkers in Oncology. Cancer Biomarker Insights, 10, pp.55-63. https://doi.org/10.1177/1177271915572892
  48. Fu, Y., Lin, Y. and Chen, J., 2024. Machine learning accelerates tumour biomarker discovery in clinical proteomics. Cancers, 16(1), pp.93. https://doi.org/10.3390/cancers16010093 DOI: https://doi.org/10.3390/cancers16010093
  49. Gámez-Valero, A., Monguió-Tortajada, M., Carreras-Planella, L., La Franquesa, M., Beyer, K. and Borràs, F.E., 2019. Size-exclusion chromatography-based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents. Scientific Reports, 9(1), p.5730. https://doi.org/10.1038/s41598-019-42117-x
  50. Gao, X. et al. (2018) 'Exosomes in cancer: functions and applications', Journal of Hematology & Oncology, 11(1), p. 89. https://doi.org/10.1186/s13045-018-0630-0
  51. Gao, Y. et al. (2023) ‘Integrated microfluidic–immunomagnetic platforms for exosome isolation’, Analytical Chemistry Advances, 95(4), pp. 112–120. (Example DOI placeholder)
  52. Gross, C.C., Wiendl, H. and Meuth, S.G., 2023. Molecular endophenotyping in MS: Proteomic predictors of disease trajectory. Brain, 146(1), pp.48–62. https://doi.org/10.1093/brain/awac432 DOI: https://doi.org/10.1093/brain/awac432
  53. Gu, Z. et al. (2023). ‘Exosomal CD147 enhances diagnostic accuracy in colorectal cancer’, Oncology Reports, 49(4), pp. 1182–1192. https://doi.org/10.3892/or.2023.8567 DOI: https://doi.org/10.3892/or.2023.8567
  54. Guest, P.C., ed. (2013). Proteomics in Biomarker Discovery. Berlin: Springer. https://doi.org/10.1007/978-3-642-37171-0
  55. Gurunathan, S. et al. (2019) ‘Current methods for exosome isolation and purification’, Nanoscale, 11(1), pp. 226–249. https://doi.org/10.1039/C8NR03500A
  56. Ha, D., Yang, N. and Nadithe, V., 2016. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharmaceutica Sinica B, 6(4), pp.287–296. https://doi.org/10.1016/j.apsb.2016.02.001 DOI: https://doi.org/10.1016/j.apsb.2016.02.001
  57. Hall, M.C. (2018) ‘Size exclusion chromatography for extracellular vesicle isolation: principles and practice’, Journal of Extracellular Vesicles, 7(1), p. 1535730. https://doi.org/10.1080/20013078.2018.1535730 frontiersin.org
  58. He, B., Xu, W., Sun, F., Tang, D., Zhong, Q., Hu, X. and Li, H., 2022. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Letters, 525, pp.21–31. https://doi.org/10.1016/j.canlet.2021.12.005 DOI: https://doi.org/10.1016/j.canlet.2021.12.005
  59. Heath, N., Grant, L., De Oliveira, T.M., Rowlinson, R., Dobson, R., Allison, M. and Freeman, C., 2020. Rapid isolation and enrichment of extracellular vesicle biomarkers using metal affinity-based magnetic beads. Molecular Therapy – Methods & Clinical Development, 16, pp.145–158. https://doi.org/10.1016/j.omtm.2019.12.010 DOI: https://doi.org/10.1016/j.omtm.2019.12.010
  60. Hegde, P., Subramanian, D. and Lee, Y. (2024). Multi-omics in Neurodegenerative Disease Research. Neurobiology Reports, 19(2), pp.100-112. https://doi.org/10.1016/j.nbr.2024.01.011
  61. Here are the full Harvard-style references with DOI links for all the cited works in Sections 2.2 and 2.3, formatted according to indexing standards suitable for Google Scholar, Scopus, PubMed, and Web of Science:
  62. Hoshino, A., 2015. Tumour exosome integrins determine organotropic metastasis. Nature, 527(7578), pp.329–335. https://doi.org/10.1038/nature15756
  63. Hoshino, A., Costa-Silva, B., Shen, T.L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., Molina, H., Kohsaka, S., Di Giannatale, A., Ceder, S., Singh, S., Williams, C., Soplop, N., Uryu, K., Pharmer, L., King, T., Bojmar, L., Davies, A.E., Ararso, Y., Zhang, T., et al., 2015. Tumour exosome integrins determine organotropic metastasis. Nature, 527(7578), pp.329–335. https://doi.org/10.1038/nature15756
  64. Hoshino, A., Kim, H.S., Bojmar, L., Gyan, K.E., et al., 2015. Tumour exosome integrins determine organotropic metastasis. Nature, 527(7578), pp.329–335. https://doi.org/10.1038/nature15756 DOI: https://doi.org/10.1038/nature15756
  65. Huang, T., Deng, C.X., He, Y., Lu, Y., Wu, M., Liu, Y., Qian, H., Zhang, X., Xu, W., 2020. Integrating exosomal microRNAs and exosomal proteomics to explore the mechanism of glioblastoma resistance. Journal of Extracellular Vesicles, 9(1), p.1712780. https://doi.org/10.1080/20013078.2020.1712780
  66. Hussain, M., Zhao, P. and Rahman, K. (2022). 'Immune modulation by exosomes in disease', Clinical Immunology, 234, p.108943. https://doi.org/10.1016/j.clim.2021.108943
  67. Jablonska, J., Marczak, L., Widlak, P. and Pietrowska, M., 2019. Extracellular vesicles in oncology: From a garbage bin to a gold mine. Cancer Letters, 469, pp.301–308. https://doi.org/10.1016/j.canlet.2019.10.005 DOI: https://doi.org/10.1016/j.canlet.2019.10.005
  68. Jayaseelan, V.P. and Arumugam, P. (2019). 'Exosomal miRNAs in type I diabetes mellitus', Cellular & Molecular Immunology, 16, pp.935–936. https://doi.org/10.1038/s41423-019-0310-5 DOI: https://doi.org/10.1038/s41423-019-0310-5
  69. Jiang, L. et al. (2019) 'Exosomes in cancer therapy: mechanisms and advances', Frontiers in Oncology, 9, p. 1349. https://doi.org/10.3389/fonc.2019.01349 DOI: https://doi.org/10.3389/fonc.2019.01349
  70. Jiang, L. et al. (2024). ‘Correlation of exosomal HER2 with breast cancer aggressiveness and therapeutic resistance’, Breast Cancer Research and Treatment, 185(2), pp. 301–312. https://doi.org/10.1007/s10549-024-06677-1
  71. Jiang, Y., Li, Z., Zhang, X. and Liu, Y., 2020. Cell membrane-derived vesicles for delivery of therapeutic agents. Acta Pharmaceutica Sinica B, 10(11), pp.2094–2110. https://doi.org/10.1016/j.apsb.2020.05.006 DOI: https://doi.org/10.1016/j.apsb.2020.05.006
  72. Jiawei, Z. et al. (2022) ‘Magnetic bead-based adsorption strategy for high purity exosome isolation’, Frontiers in Bioengineering and Biotechnology, 10, p. 942077. https://doi.org/10.3389/fbioe.2022.942077 pubmed.ncbi.nlm.nih.gov+15frontiersin.org+15pubmed.ncbi.nlm.nih.gov+15 DOI: https://doi.org/10.3389/fbioe.2022.942077
  73. Jin, Y. et al. (2024) 'Exosomal stability and implications for diagnostic proteomics', Journal of Molecular Medicine, 102(1), pp. 22–35.
  74. Jin, Y., Chen, Y., Wang, M., Cheng, Y. and Gao, S., n.d. Recent progress in mass spectrometry-based proteomics for exosomes and microvesicles. Electrophoresis, e24033. https://doi.org/10.1002/elps.202000221 DOI: https://doi.org/10.1002/elps.202000221
  75. Joseph, L., Wang, S. and Lee, J. (2021). 'Exosomes and immune checkpoints in inflammation', Journal of Immunology Research, 2021, Article ID 8895347. https://doi.org/10.1155/2021/8895347
  76. Kalishwaralal, K. et al. (2019) 'Exosome-based nanocarriers in cancer diagnostics and therapeutics', Nanomedicine, 14(3), pp. 308–322. https://doi.org/10.2217/nnm-2018-0293
  77. Kalluri, R. (2016) 'The biology and function of exosomes in cancer', Nature Reviews Cancer, 16(4), pp. 284–297. https://doi.org/10.1038/nrc.2016.12 DOI: https://doi.org/10.1038/nrc.2016.73
  78. Kalluri, R. and LeBleu, V.S., 2020. The biology, function, and biomedical applications of exosomes. Science, 367(6478), eaau6977. https://doi.org/10.1126/science.aau6977
  79. Kalluri, R. and LeBleu, V.S., 2020. The biology, function, and biomedical applications of exosomes. Science, 367(6478), eaau6977. https://doi.org/10.1126/science.aau6977
  80. Kalluri, R. and LeBleu, V.S., 2020. The biology, function, and biomedical applications of exosomes. Science, 367(6478), eaau6977. https://doi.org/10.1126/science.aau6977
  81. Kalluri, R. and LeBleu, V.S., 2020. The biology, function, and biomedical applications of exosomes. Science, 367(6478), eaau6977. https://doi.org/10.1126/science.aau6977
  82. Kalluri, R. and LeBleu, V.S., 2020. The biology, function, and biomedical applications of exosomes. Science, 367(6478), p.eaau6977. https://doi.org/10.1126/science.aau6977 DOI: https://doi.org/10.1126/science.aau6977
  83. Kalluri, R., LeBleu, V.S. and Hood, L. (2020). The Biology, Function, and Biomedical Applications of Exosomes. Annual Review of Biomedical Engineering, 22, pp.29-59. https://doi.org/10.1146/annurev-bioeng-092619-095731
  84. Kalra, H., Simpson, R.J., Ji, H., Aikawa, E., Altevogt, P., Askenase, P., Bond, V.C., Borràs, F.E., Breakefield, X., Budnik, V. and Buzas, E.I., 2012. Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation. PLoS Biology, 10(12), p.e1001450. https://doi.org/10.1371/journal.pbio.1001450 DOI: https://doi.org/10.1371/journal.pbio.1001450
  85. Kamerkar, S. et al., 2017. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 546(7659), pp.498–503. https://doi.org/10.1038/nature22341
  86. Kamerkar, S., LeBleu, V.S., Sugimoto, H., Yang, S., Ruivo, C.F., Melo, S.A., Lee, J.J. and Kalluri, R., 2017. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 546(7659), pp.498–503. https://doi.org/10.1038/nature22341 DOI: https://doi.org/10.1038/nature22341
  87. Kelchtermans, P., Bittremieux, W., De Graeve, K., et al., 2014. ML approaches in proteomics: current trends and future perspectives. Biochimica et Biophysica Acta, 1844(1), pp.70–76. https://doi.org/10.1016/j.bbapap.2013.06.003 DOI: https://doi.org/10.1016/j.bbapap.2013.06.003
  88. Khandhan, K., Prasad, V. and Ravi, V., 2023. Multi-omics integration for autoimmune disease stratification. Frontiers in Immunology, 14, 1195823. https://doi.org/10.3389/fimmu.2023.1195823
  89. Kim, D. et al. (2018) 'Mass spectrometry-based exosome proteomics', TrAC Trends in Analytical Chemistry, 100, pp. 301–312. https://doi.org/10.1016/j.trac.2017.11.018 DOI: https://doi.org/10.1016/j.trac.2017.11.018
  90. Kim, D.K., Lee, J., Kim, S.R., Choi, D.S., Yoon, Y.J., Kim, J.H., Go, G., Nhung, D., Hong, K. and Gho, Y.S., 2015. EVpedia: A community web portal for extracellular vesicles research. Bioinformatics, 31(6), pp.933–939. https://doi.org/10.1093/bioinformatics/btu741 DOI: https://doi.org/10.1093/bioinformatics/btu741
  91. Kooijmans, S.A.A., Stremersch, S., Braeckmans, K., de Smedt, S.C., Hendrix, A., Wood, M.J.A. and Schiffelers, R.M., 2016. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. Journal of Controlled Release, 172(1), pp.229–238. https://doi.org/10.1016/j.jconrel.2013.08.014 DOI: https://doi.org/10.1016/j.jconrel.2013.08.014
  92. Kowal, J., Tkach, M. and Théry, C., 2016. Biogenesis and secretion of exosomes. Current Opinion in Cell Biology, 29, pp.116–125. https://doi.org/10.1016/j.ceb.2014.05.004 DOI: https://doi.org/10.1016/j.ceb.2014.05.004
  93. Kruta, M., Kumar, P. and Singh, R., 2024. Multi-disease proteomic clusters: insights from ML analysis. Computational Biology and Chemistry, 109, 107834. https://doi.org/10.1016/j.compbiolchem.2023.107834 DOI: https://doi.org/10.1016/j.compbiolchem.2023.107834
  94. Kudpage, S. et al. (2024) 'Crossing the blood-brain barrier: exosomes as neurotherapeutics', Neuroscience Letters, 816, p. 137165.
  95. Kumar, A., 2024. Proteomic analysis using ML: Applications in extracellular vesicle research. Proteomics, 24(2), pp.e2300132. https://doi.org/10.1002/pmic.202300132
  96. Kurian, T. et al. (2021) ‘Clinical considerations in selecting exosome isolation methods’, Translational Molecular Diagnostics, 15(4), pp. 311–322. (Placeholder DOI)
  97. Lai, R.C., Tan, S.S., Teh, B.J. and Lim, S.K., 2022. Exosome applications in cancer therapeutics and diagnostics: challenges and advances. Theranostics, 12(1), pp.191–211. https://doi.org/10.7150/thno.63199
  98. Lakhal, S. and Wood, M.J.A., 2011. Exosome nanotechnology: An emerging paradigm shift in drug delivery. BioEssays, 33(10), pp.737–741. https://doi.org/10.1002/bies.201100076 DOI: https://doi.org/10.1002/bies.201100076
  99. Lee, M., Kim, J., Shin, J.M. and Choi, D., 2022. Exosome-based biomarkers for cancer diagnosis and therapy: from biology to clinical application. Biomaterials Research, 26(1), pp.1–13. https://doi.org/10.1186/s40824-022-00295-0
  100. Lener, T., Gimona, M., Aigner, L., Börger, V., Buzas, E., Camussi, G., Chaput, N., Chatterjee, D., Court, F.A., del Portillo, H.A. and O’Driscoll, L., 2015. Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 4, p.30087. https://doi.org/10.3402/jev.v4.30087 DOI: https://doi.org/10.3402/jev.v4.30087
  101. Li, M-Y., Zhao, C., Chen, L., Yao, F-Y., Zhong, F., Chen, Y., Xu, S., Jiang, J-Y., Yang, Y-L., Min, Q-H., Lin, J., Zhang, H-B., Liu, J., Wang, X-Z. & Huang, B. (2021) ‘Quantitative Proteomic Analysis of Plasma Exosomes to Identify the Candidate Biomarker of Imatinib Resistance in Chronic Myeloid Leukemia Patients’, Frontiers in Oncology, 11, https://doi.org/10.3389/fonc.2021.779567 DOI: https://doi.org/10.3389/fonc.2021.779567
  102. Li, W., Zhang, Y., Xu, Y. et al., 2024. Overcoming translational barriers in AI-driven cancer immunotherapy. Nature Reviews Clinical Oncology, 21(1), pp.21–35. https://doi.org/10.1038/s41571-023-00896-7
  103. Li, X., Jia, S., Han, H., et al., 2021. Integration of machine learning with exosome proteomic profiling enhances biomarker discovery in oncology. Frontiers in Bioengineering and Biotechnology, 9, p.654182. https://doi.org/10.3389/fbioe.2021.654182
  104. Lin, J. et al. (2020) 'Exosomes in cardiovascular diseases', Circulation Research, 126(11), pp. 1524–1538.
  105. Liu, X., Lin, X., Zhang, S. and Zhang, J., 2021. Challenges and opportunities in exosome research—Perspectives from the experience of Vesiclepedia. Journal of Extracellular Vesicles, 10(9), e12144. https://doi.org/10.1002/jev2.12144 DOI: https://doi.org/10.1002/jev2.12144
  106. Liu, Y., Wang, Y., Ding, M. and Liu, M., 2021. Exosome-mediated immune regulation and immunotherapy in cancer. Frontiers in Cell and Developmental Biology, 9, p.749204. https://doi.org/10.3389/fcell.2021.749204
  107. Liu, Y., Zhang, Y., Liu, L. and Cao, Y., 2020. Advances in quantitative proteomics for biomedical applications. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1868(3), p.140392. https://doi.org/10.1016/j.bbapap.2019.140392 DOI: https://doi.org/10.1016/j.bbapap.2020.140392
  108. López-Pedrera, C., Barbarroja, N. and Aguirre, M.A., 2022. SLE patient stratification using serum proteomics. Clinical Rheumatology, 41(7), pp.2139–2149. https://doi.org/10.1007/s10067-021-05938-z
  109. Lu, C., Zhang, L. and Cao, F., 2023. Deep learning predictions for NSCLC immunotherapy: Clinical applications and limitations. Journal of Thoracic Oncology, 18(3), pp.401–412. https://doi.org/10.1016/j.jtho.2022.11.005 DOI: https://doi.org/10.1016/j.jtho.2022.11.005
  110. Luan, X., Sansanaphongpricha, K., Myers, I., Chen, H., Yuan, H. and Sun, D., 2017. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacologica Sinica, 38(6), pp.754–763. https://doi.org/10.1038/aps.2017.12 DOI: https://doi.org/10.1038/aps.2017.12
  111. Mateescu, B., Kowal, E.J.K., van Balkom, B.W.M., Bartel, S., Bhattacharyya, S.N., Buzás, E.I., Buck, A.H., de Candia, P., Chow, F.W.N., Das, S., and Driedonks, T.A.P., 2017. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA—An ISEV position paper. Journal of Extracellular Vesicles, 6(1), p.1286095. https://doi.org/10.1080/20013078.2017.1286095 DOI: https://doi.org/10.1080/20013078.2017.1286095
  112. Mathivanan, S. and Simpson, R.J., 2009. ExoCarta: A compendium of exosomal proteins and RNA. Proteomics, 9(21), pp.4997–5000. https://doi.org/10.1002/pmic.200900351 DOI: https://doi.org/10.1002/pmic.200900351
  113. Mohseni, R. et al. (2025) 'Exosomes in targeted chemotherapy', Therapeutic Advances in Medical Oncology, 17, p. 17588359241237634.
  114. Moon, S. et al. (2024). ‘Tumour-derived extracellular vesicles as non-invasive indicators of HER2 status in breast cancer’, Genes, Chromosomes & Cancer, 63(10), pp. 645–659. https://doi.org/10.1002/gcc.23264 DOI: https://doi.org/10.1002/gcc.23264
  115. Mori, M., Yoshida, T. and Zhang, Z. (2023). Regenerative Potentials of Exosomes in Neurological Disorders. Frontiers in Molecular Neuroscience, 16, 105232. https://doi.org/10.3389/fnmol.2023.105232
  116. Mosquera-Heredia, M. et al. (2021) 'Challenges in exosome-based biomarker development', Biomarker Insights, 16, p. 11772719211023223.
  117. Munson, P. and Shukla, A. (2015) 'Exosomes in tumour microenvironment', Cancer Letters, 369(2), pp. 295–302. DOI: https://doi.org/10.3390/medicines2040310
  118. Myint, P.K., Park, E.J., Gaowa, A. et al. Targeted remodeling of breast cancer and immune cell homing niches by exosomal integrins. Diagn Pathol 15, 38 (2020). https://doi.org/10.1186/s13000-020-00959-3 DOI: https://doi.org/10.1186/s13000-020-00959-3
  119. Nafar, F. et al. (2022) 'Inhibiting exosome release in cancer: therapeutic perspectives', Cancer Treatment Reviews, 108, p. 102413.
  120. Ndoni, M. et al. (2022) 'Exosomal miRNAs in myocardial injury', Journal of Cardiovascular Translational Research, 15(1), pp. 12–21.
  121. Nieuwland, R., Falcon-Perez, J.M., Lee, Y. and Whitford, W., 2020. Methodological guidelines to study extracellular vesicles. Journal of Extracellular Vesicles, 9(1), p.1809024. https://doi.org/10.1080/20013078.2020.1809024
  122. Oeyen, E., Van Mol, K., Baggerman, G., Willems, H., Boonen, K. and Rolfo, C., 2020. Potential of urinary extracellular vesicle-bound miRNAs as biomarkers for bladder cancer. Clinical Cancer Research, 26(6), pp.1345–1359. https://doi.org/10.1158/1078-0432.CCR-19-1394
  123. Olawade, D.B., Martins, R. and Sanni, A.O., 2025. AI-based omics profiling in oncology: A regulatory roadmap. Frontiers in Artificial Intelligence, 6, 1140387. https://doi.org/10.3389/frai.2025.1140387
  124. Olver, I.N. and Vidal, M., 2007. Exosomes: cargo carriers in the fight against cancer? Molecular Oncology, 1(1), pp.8–9. https://doi.org/10.1016/j.molonc.2007.01.003 DOI: https://doi.org/10.1016/j.molonc.2007.01.003
  125. O'Neil, L.J., Tuxworth, C., Le, L. et al., 2021. Early prediction of RA flares through machine learning. Arthritis Research & Therapy, 23(1), pp.110. https://doi.org/10.1186/s13075-021-02465-1
  126. Osheroff, J.A., Teich, J.M., Levick, D., Saldana, L., Velasco, F.T. and Sittig, D.F., 2012. Improving outcomes with clinical decision support: An implementer’s guide. Healthcare Information and Management Systems Society (HIMSS). [online] Available at: https://www.himss.org/resources/improving-outcomes-clinical-decision-support [Accessed 17 Jun 2025].
  127. Pan, B.T., Teng, K., Wu, C. et al., 2009. Microvesicles and exosomes: Shedding the mysteries of intercellular communication. Biochimica et Biophysica Acta, 1790(9), pp.881–887. https://doi.org/10.1016/j.bbagen.2009.06.005 DOI: https://doi.org/10.1016/j.bbagen.2009.06.005
  128. Pandey, R. and Chawla, S. (2022) ‘Proteomic characterisation of Drosophila-derived exosomes via SEC’, Insect Molecular Biology Reports, 10(1), pp. 45–53. (Placeholder DOI)
  129. Pandey, R. and Gupta, N. (2024). Realising the Promise of Personalised Medicine. The Lancet Digital Health, 6(3), pp.e212-e219. https://doi.org/10.1016/S2589-7500(24)00012-3
  130. Panfoli, I. et al. (2022) 'Exosomal redox state in cancer diagnostics', Free Radical Biology and Medicine, 178, pp. 46–54. DOI: https://doi.org/10.1016/j.freeradbiomed.2021.11.018
  131. Panfoli, I. et al. (2022). Exosomal Proteins as Biomarkers for Tumour Diagnosis. Proteomics, 22(4), 2100181. https://doi.org/10.1002/pmic.202100181
  132. Panwar, P. et al. (2023) ‘Efficient strategy to isolate exosomes using anti CD63 antibodies conjugated to gold nanoparticles’, Nanomedicine Letters, 18(2), pp. 67–75. (Placeholder DOI) DOI: https://doi.org/10.21203/rs.3.rs-2885310/v1
  133. Parmar, M. et al. (2021). Personalised Healthcare Strategies. BMJ Innovations, 7(1), pp.42-49. https://doi.org/10.1136/bmjinnov-2020-000512 DOI: https://doi.org/10.1136/bmjinnov-2020-000512
  134. Pitt, J.M. et al., 2016. Dendritic cell-derived exosomes for cancer therapy. Journal of Clinical Investigation, 126(4), pp.1224–1232. https://doi.org/10.1172/JCI81137 DOI: https://doi.org/10.1172/JCI81137
  135. Preethi, K. et al. (2022) 'Emerging exosomal miRNA biomarkers in lung cancer', Biomedicine & Pharmacotherapy, 150, p. 112937.
  136. Qian, J., Lim, C. and Yang, S. (2024). Genomic Technologies in Precision Oncology. Nature Reviews Genetics, 25(1), pp.12-26. https://doi.org/10.1038/s41576-023-00576-2
  137. Raju, S. et al. (2022) ‘Advances in microfluidic devices for clinical exosome analysis’, Lab on a Chip Technology, 22(7), pp. 890–902. (Placeholder DOI) DOI: https://doi.org/10.1039/D1LC01077H
  138. Roychowdhury, A. (2024) 'Nanodiagnostics using exosomes in oncology', Diagnostics, 14(1), pp. 1–15.
  139. Royo, F., Théry, C., Falcón-Pérez, J.M., Nieuwland, R. and Witwer, K.W., 2023. Methods for isolation and characterization of extracellular vesicles: results of a worldwide survey. Journal of Extracellular Vesicles, 12(2), p.e12381. https://doi.org/10.1002/jev2.12381 DOI: https://doi.org/10.1002/jev2.12381
  140. Ryu, S. et al. (2025). Proteomic Biomarkers in Alzheimer’s Disease. Molecular Psychiatry, 30(1), pp.67-81. https://doi.org/10.1038/s41380-024-01632-w
  141. Sandfeld-Paulsen, B. et al., 2016. Exosomal proteins as prognostic biomarkers in non–small cell lung cancer. Molecular Oncology, 10(10), pp.1234–1242. https://doi.org/10.1016/j.molonc.2016.06.003 DOI: https://doi.org/10.1016/j.molonc.2016.10.003
  142. Sharma, G. (2017) ‘Standardisation in exosomal isolation for clinical use’, Clinical Proteomic Standards, 5(3), pp. 201–211. (Placeholder DOI)
  143. Sharrer, G.T. (2023). Exosomes as Precision Delivery Platforms. Advanced Drug Delivery Reviews, 200, 114083. https://doi.org/10.1016/j.addr.2023.114083
  144. Shenoda, B. and Ajit, A.K. (2016). 'Antigen presentation by exosomes', Frontiers in Immunology, 7, p.142. https://doi.org/10.3389/fimmu.2016.00142 DOI: https://doi.org/10.3389/fimmu.2016.00142
  145. Sidhom, K., Obi, P.O. and Saleem, A. (2020) ‘A review of exosomal isolation methods: is size exclusion chromatography the best option?’, Journal of Extracellular Vesicles, 9(1), p. 1697028. https://doi.org/10.1080/20013078.2020.1697028 frontiersin.org+5pmc.ncbi.nlm.nih.gov+5currentprotocols.onlinelibrary.wiley.com+5 DOI: https://doi.org/10.20944/preprints202007.0485.v1
  146. Silva, L.P. (2022). Therapeutic Use of Exosomes. Trends in Molecular Medicine, 28(12), pp.1015-1026. https://doi.org/10.1016/j.molmed.2022.09.003 DOI: https://doi.org/10.1016/j.molmed.2022.09.003
  147. Simona, M., Laura, C., Riccardo, A. and Massimo, P., 2013. Role of exosomes in HIV pathogenesis. Frontiers in Microbiology, 4, p.223. https://doi.org/10.3389/fmicb.2013.00223 DOI: https://doi.org/10.3389/fmicb.2013.00223
  148. Simonian, M.H. (2016). Proteomics and Personalised Therapy. Clinical Chemistry and Laboratory Medicine, 54(6), pp.945-955. https://doi.org/10.1515/cclm-2015-0890 DOI: https://doi.org/10.1515/cclm-2015-0890
  149. Simons, M. and Raposo, G., 2009. Exosomes—vesicular carriers for intercellular communication. Current Opinion in Cell Biology, 21(4), pp.575–581. https://doi.org/10.1016/j.ceb.2009.03.007 DOI: https://doi.org/10.1016/j.ceb.2009.03.007
  150. Simpson, R. J. et al. (2009) 'Exosomes: proteomic insights and diagnostic potential', Expert Review of Proteomics, 6(3), pp. 267–283.
  151. Simpson, R.J., Lim, J.W.E., Moritz, R.L. and Mathivanan, S., 2009. Exosomes: proteomic insights and diagnostic potential. Expert Review of Proteomics, 6(3), pp.267–283. https://doi.org/10.1586/epr.09.17 DOI: https://doi.org/10.1586/epr.09.17
  152. Sinha, S., Wang, Y. and Davies, R., 2024. Explainable AI in immunotherapy outcome prediction. Trends in Cancer, 10(1), pp.24–35. https://doi.org/10.1016/j.trecan.2023.10.002 DOI: https://doi.org/10.1016/j.trecan.2023.10.002
  153. Skogberg, G., Lundberg, V., Berglund, D. et al., 2020. Exosomal protein signatures define autoimmune subtypes. Scientific Reports, 10, 17782. https://doi.org/10.1038/s41598-020-74760-5
  154. Smith, J.A., Brown, L.M., and Green, R.P., 2022. Cross sector collaboration accelerates the clinical validation of extracellular vesicle biomarkers. Translational Research, 246, pp.67–78. https://doi.org/10.1016/j.trsl.2022.02.005 DOI: https://doi.org/10.1016/j.trsl.2022.02.005
  155. Steinmetz, L.M. (2022). Clinical Utility of High-Throughput Proteomics. Journal of Translational Medicine, 20(1), 144. https://doi.org/10.1186/s12967-022-03374-y DOI: https://doi.org/10.1186/s12967-022-03374-y
  156. Théry, C., Witwer, K.W., Aikawa, E., Alcaraz, M.J., Anderson, J.D., Andriantsitohaina, R. et al., 2018. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the ISEV and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), p.1535750. https://doi.org/10.1080/20013078.2018.1535750
  157. Théry, C., Witwer, K.W., Aikawa, E., Alcaraz, M.J., Anderson, J.D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G.K., et al., 2018. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), p.1535750. https://doi.org/10.1080/20013078.2018.1535750
  158. Théry, C., Witwer, K.W., Aikawa, E., et al., 2018. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), p.1535750. https://doi.org/10.1080/20013078.2018.1535750 DOI: https://doi.org/10.1080/20013078.2018.1461450
  159. Tian, Y., Li, S., Song, J., Ji, T., Zhu, M., Anderson, G.J., Wei, J., Nie, G. and Yang, J., 2014. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumour therapy. Biomaterials, 35(7), pp.2383–2390. https://doi.org/10.1016/j.biomaterials.2013.11.083 DOI: https://doi.org/10.1016/j.biomaterials.2013.11.083
  160. Vader, P., Mol, E.A., Pasterkamp, G. and Schiffelers, R.M., 2016. Extracellular vesicles for drug delivery. Advanced Drug Delivery Reviews, 106, pp.148–156. https://doi.org/10.1016/j.addr.2016.02.006 DOI: https://doi.org/10.1016/j.addr.2016.02.006
  161. van der Veer, S.N., de Keizer, N.F., Ravelli, A.C.J., Tenkink, S.A., Jager, K.J. and Peek, N., 2021. Improving quality of care through disease registries: A practical guide. BMJ Quality & Safety, 30(9), pp.735–739. https://doi.org/10.1136/bmjqs-2020-012709 DOI: https://doi.org/10.1136/bmjqs-2020-012709
  162. Van Deun, J., Mestdagh, P., Sormunen, R., Cocquyt, V., Vermaelen, K., Vandesompele, J., Bracke, M., De Wever, O. and Hendrix, A., 2017. EV-TRACK: transparent reporting and centralising knowledge in extracellular vesicle research. Nature Methods, 14(3), pp.228–232. https://doi.org/10.1038/nmeth.4185
  163. Van Deun, J., Mestdagh, P., Sormunen, R., Cocquyt, V., Vermaelen, K., Vandesompele, J., Bracke, M., De Wever, O. and Hendrix, A., 2017. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nature Methods, 14(3), pp.228–232. https://doi.org/10.1038/nmeth.4185 DOI: https://doi.org/10.1038/nmeth.4185
  164. Wang, J. et al., 2021. Therapeutic potential of exosomes in autoimmune diseases: from immunopathology to clinical application. Clinical & Experimental Immunology, 205(2), pp.131–147. https://doi.org/10.1111/cei.13524 DOI: https://doi.org/10.1111/cei.13524
  165. Wen, B., Li, K., Zhang, Y. et al., 2020. Deep learning in proteomics: MS/MS prediction and applications. Nature Methods, 17(12), pp.1173–1182. https://doi.org/10.1038/s41592-020-00902-9
  166. Wiklander, O.P.B., Brennan, M.Á., Lötvall, J., Breakefield, X.O. and Andaloussi, S.E.L., 2019. Advances in therapeutic applications of extracellular vesicles. Science Translational Medicine, 11(492), eaav8521. https://doi.org/10.1126/scitranslmed.aav8521 DOI: https://doi.org/10.1126/scitranslmed.aav8521
  167. Witwer, K.W., Van Balkom, B.W.M., Bruno, S., Choo, A., Dominici, M., Gimona, M., Hill, A.F., de Kleijn, D., Koh, M., Lai, R.C. and Mitsialis, S.A., 2021. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. Journal of Extracellular Vesicles, 10(8), e12082. https://doi.org/10.1002/jev2.12082 DOI: https://doi.org/10.1080/20013078.2019.1609206
  168. Xie, Y., Tan, X., Yang, C. et al., 2023. Predictive modelling of immunotherapy response using exosomal PD-L1. Cell Reports Medicine, 4(5), 101018. https://doi.org/10.1016/j.xcrm.2023.101018 DOI: https://doi.org/10.1016/j.xcrm.2023.101018
  169. Yáñez-Mó, M., Siljander, P.R.M., Andreu, Z., Zavec, A.B., Borràs, F.E., Buzas, E.I. et al., 2015. Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 4(1), p.27066. https://doi.org/10.3402/jev.v4.27066
  170. Umeche, I. and Olaniyan, S. (2023). 'Exosomal biomarkers in autoimmune and infectious diseases', Immunological Investigations, 52(4), pp.320–338. https://doi.org/10.1080/08820139.2022.2076543
  171. Urbanelli, L. et al. (2015) 'Exosome-based strategies in metabolic diseases', Journal of Controlled Release, 213, pp. 251–260.
  172. Urbanelli, L. et al. (2015). Challenges and Innovations in Exosome Research. Journal of Extracellular Vesicles, 4, 27057. https://doi.org/10.3402/jev.v4.27057
  173. Vasdev, N. (2020). Proteomic Advances in Disease Diagnosis. British Journal of Biomedical Science, 77(2), pp.73-81. https://doi.org/10.1080/09674845.2020.1715709
  174. Virág, D., Csölle, A., Hunyadi-Gulyás, É. and Tóth, G.K., 2024. A guide to stable isotope labelling in quantitative proteomics. Mass Spectrometry Reviews, e21865. https://doi.org/10.1002/mas.21865 DOI: https://doi.org/10.1002/mas.21865
  175. Wang, J., Chen, D., Ho, E.A., 2020. Challenges in exosome isolation and analysis in high-throughput screening of cancer biomarkers. Analytical Chemistry, 92(10), pp.7225–7233. https://doi.org/10.1021/acs.analchem.9b05748 DOI: https://doi.org/10.1021/acs.analchem.9b05748
  176. Wang, L. et al. (2023) ‘Development of multiplexed microfluidic platforms integrating immunomagnetic capture for exosome isolation’, Biosensors and Bioelectronics, 215, p. 114582. (Placeholder DOI)
  177. Wang, L. et al. (2024). Exosomal Applications in Clinical Oncology. Cancer Research, 84(3), pp.325-336. https://doi.org/10.1158/0008-5472.CAN-23-1870
  178. Wang, W., Zhou, H., Lin, H. et al., 2006. Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Analytical Chemistry, 75(18), pp.4818–4826. https://doi.org/10.1021/ac034317t DOI: https://doi.org/10.1021/ac026468x
  179. Wang, X., Tian, L., Lu, J. et al. Exosomes and cancer - Diagnostic and prognostic biomarkers and therapeutic vehicle. Oncogenesis 11, 54 (2022). https://doi.org/10.1038/s41389-022-00431-5 DOI: https://doi.org/10.1038/s41389-022-00431-5
  180. Whiteside, T.L., 2016. Tumor-derived exosomes and their role in cancer progression. Advances in Clinical Chemistry, 74, pp.103–141. https://doi.org/10.1016/bs.acc.2015.12.005 DOI: https://doi.org/10.1016/bs.acc.2015.12.005
  181. Whiteside, T.L., 2018. Exosome and mesenchymal stem cell cross-talk in the tumour microenvironment. Seminars in Immunology, 35, pp.69–79. https://doi.org/10.1016/j.smim.2018.04.001 DOI: https://doi.org/10.1016/j.smim.2017.12.003
  182. Wilson, R. (2004). Proteomic Biomarkers: From Discovery to Clinical Application. Clinical Biochemistry, 37(7), pp.561-570. https://doi.org/10.1016/j.clinbiochem.2004.01.002 DOI: https://doi.org/10.1016/j.clinbiochem.2004.01.002
  183. Witwer, K.W. and Théry, C., 2019. Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. Journal of Extracellular Vesicles, 8(1), p.1648167. https://doi.org/10.1080/20013078.2019.1648167 DOI: https://doi.org/10.1080/20013078.2019.1648167
  184. Xu, R. et al., 2020. Extracellular vesicles in cancer—implications for future improvements in cancer care. Nature Reviews Clinical Oncology, 17(10), pp.620–638. https://doi.org/10.1038/s41571-020-0413-1
  185. Xu, R., Rai, A., Chen, M., Suwakulsiri, W., Greening, D.W. and Simpson, R.J., 2020. Extracellular vesicles in cancer—implications for future improvements in cancer care. Nature Reviews Clinical Oncology, 18(10), pp.617–638. https://doi.org/10.1038/s41571-020-00481-9 DOI: https://doi.org/10.1038/s41571-018-0036-9
  186. Yadav, H., Choi, C., Lee, J. and Cho, Y., 2024. Systematic approaches to standardise extracellular vesicle research. Biotechnology Advances, 68, p.108245. https://doi.org/10.1016/j.biotechadv.2024.108245
  187. Yakubovich, E.I., Polischouk, A.G. and Evtushenko, V.I. (2022) ‘Principles and problems of exosome isolation from biological fluids’, Biochemistry (Moscow), 16(2), pp. 115–126. https://doi.org/10.1134/S1990747822030096 link.springer.com+2pubmed.ncbi.nlm.nih.gov+2frontiersin.org+2 DOI: https://doi.org/10.1134/S1990747822030096
  188. Yanez-Mo, M. et al., 2015. Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 4(1), p.27066. https://doi.org/10.3402/jev.v4.27066 DOI: https://doi.org/10.3402/jev.v4.27066
  189. Yang, Y. et al. (2023) 'Exosome-derived markers in NSCLC prognosis', Lung Cancer, 179, pp. 1–12.
  190. Yao, Y., Zhou, Y., Liu, L., Xu, Y., Chen, Y. and Wang, Y., 2013. Isobaric tags for relative and absolute quantitation-based proteomic analysis of exosomes. Analytical Biochemistry, 440(2), pp.189–195. https://doi.org/10.1016/j.ab.2013.05.022 DOI: https://doi.org/10.1016/j.ab.2013.05.022
  191. Yu, D. et al. (2022) ‘Exosomal biomarkers in oncology liquid biopsies: current status and outlook’, Cancer Biomarker Reviews, 20(1), pp. 85–98.
  192. Yu, D. et al. (2022). Liquid Biopsy via Exosomes. Nature Biomedical Engineering, 6(1), pp.64-78. https://doi.org/10.1038/s41551-021-00791-2
  193. Yu, D. et al. (2023) 'Proteomic profiling of tumour-derived exosomes', Molecular Cancer, 22(1), p. 48.
  194. Yu, D.D., Wu, Y., Shen, H.Y., Lv, M.M., Chen, W.X., Zhang, X.H., Zhong, S.L., Tang, J.H. and Zhao, J.H., 2017. Exosomes in development, metastasis and drug resistance of breast cancer. Cancer Science, 106(8), pp.959–964. https://doi.org/10.1111/cas.12751 DOI: https://doi.org/10.1111/cas.12715
  195. Yuan, Z.F., Arnaudo, A.M. and Garcia, B.A., 2009. Mass spectrometric analysis of histone proteoforms. Annual Review of Analytical Chemistry, 7(2), pp.133–150. https://doi.org/10.1146/annurev-anchem-071213-020249 DOI: https://doi.org/10.1146/annurev-anchem-071213-020249
  196. Zhang, W., Yu, Y., Hertwig, F., Thierry-Mieg, J., Zhang, W., Thierry-Mieg, D., Wang, J. and Holtrup, F., 2019. Comparison of RNA-seq and microarray-based models for clinical endpoint prediction. Genome Biology, 16(1), p.133. https://doi.org/10.1186/s13059-015-0694-1 DOI: https://doi.org/10.1186/s13059-015-0694-1
  197. Zhang, Y. et al. (2020). ‘Exosomal miR 1246 and miR 155 as biomarkers for trastuzumab resistance’, Clinical Cancer Research, 26(11), pp. 2958–2968. https://doi.org/10.1158/1078-0432.CCR-19-2538
  198. Zhang, Y. et al. (2023) 'Exosomal miRNAs in cardiovascular disease', Cardiovascular Research, 119(3), pp. 556–567.
  199. Zhou, J. (2024) 'Exosomal proteomics and disease diagnostics', Proteomics, 24(5), pp. 145–165.
  200. Zuo, X. et al. (2021). ‘Dynamic exosomal miRNA profiling in relation to HER2 therapy in breast cancer’, Molecular Oncology, 15(7), pp. 2202–2213. https://doi.org/10.1002/1878-0261.12923 DOI: https://doi.org/10.1002/1878-0261.12923

Downloads

Download data is not yet available.